features2d.hpp 62.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_FEATURES_2D_HPP__
#define __OPENCV_FEATURES_2D_HPP__

#include "opencv2/core/core.hpp"
#include "opencv2/flann/miniflann.hpp"

#ifdef __cplusplus
#include <limits>

namespace cv
{

CV_EXPORTS bool initModule_features2d();

/*!
 The Keypoint Class

 The class instance stores a keypoint, i.e. a point feature found by one of many available keypoint detectors, such as
 Harris corner detector, cv::FAST, cv::StarDetector, cv::SURF, cv::SIFT, cv::LDetector etc.

 The keypoint is characterized by the 2D position, scale
 (proportional to the diameter of the neighborhood that needs to be taken into account),
 orientation and some other parameters. The keypoint neighborhood is then analyzed by another algorithm that builds a descriptor
 (usually represented as a feature vector). The keypoints representing the same object in different images can then be matched using
 cv::KDTree or another method.
*/
class CV_EXPORTS_W_SIMPLE KeyPoint
{
public:
    //! the default constructor
    CV_WRAP KeyPoint() : pt(0,0), size(0), angle(-1), response(0), octave(0), class_id(-1) {}
    //! the full constructor
    KeyPoint(Point2f _pt, float _size, float _angle=-1,
            float _response=0, int _octave=0, int _class_id=-1)
            : pt(_pt), size(_size), angle(_angle),
            response(_response), octave(_octave), class_id(_class_id) {}
    //! another form of the full constructor
    CV_WRAP KeyPoint(float x, float y, float _size, float _angle=-1,
            float _response=0, int _octave=0, int _class_id=-1)
            : pt(x, y), size(_size), angle(_angle),
            response(_response), octave(_octave), class_id(_class_id) {}

    size_t hash() const;

    //! converts vector of keypoints to vector of points
    static void convert(const vector<KeyPoint>& keypoints,
                        CV_OUT vector<Point2f>& points2f,
                        const vector<int>& keypointIndexes=vector<int>());
    //! converts vector of points to the vector of keypoints, where each keypoint is assigned the same size and the same orientation
    static void convert(const vector<Point2f>& points2f,
                        CV_OUT vector<KeyPoint>& keypoints,
                        float size=1, float response=1, int octave=0, int class_id=-1);

    //! computes overlap for pair of keypoints;
    //! overlap is a ratio between area of keypoint regions intersection and
    //! area of keypoint regions union (now keypoint region is circle)
    static float overlap(const KeyPoint& kp1, const KeyPoint& kp2);

    CV_PROP_RW Point2f pt; //!< coordinates of the keypoints
    CV_PROP_RW float size; //!< diameter of the meaningful keypoint neighborhood
    CV_PROP_RW float angle; //!< computed orientation of the keypoint (-1 if not applicable);
                            //!< it's in [0,360) degrees and measured relative to
                            //!< image coordinate system, ie in clockwise.
    CV_PROP_RW float response; //!< the response by which the most strong keypoints have been selected. Can be used for the further sorting or subsampling
    CV_PROP_RW int octave; //!< octave (pyramid layer) from which the keypoint has been extracted
    CV_PROP_RW int class_id; //!< object class (if the keypoints need to be clustered by an object they belong to)
};

//! writes vector of keypoints to the file storage
CV_EXPORTS void write(FileStorage& fs, const string& name, const vector<KeyPoint>& keypoints);
//! reads vector of keypoints from the specified file storage node
CV_EXPORTS void read(const FileNode& node, CV_OUT vector<KeyPoint>& keypoints);

/*
 * A class filters a vector of keypoints.
 * Because now it is difficult to provide a convenient interface for all usage scenarios of the keypoints filter class,
 * it has only several needed by now static methods.
 */
class CV_EXPORTS KeyPointsFilter
{
public:
    KeyPointsFilter(){}

    /*
     * Remove keypoints within borderPixels of an image edge.
     */
    static void runByImageBorder( vector<KeyPoint>& keypoints, Size imageSize, int borderSize );
    /*
     * Remove keypoints of sizes out of range.
     */
    static void runByKeypointSize( vector<KeyPoint>& keypoints, float minSize,
                                   float maxSize=FLT_MAX );
    /*
     * Remove keypoints from some image by mask for pixels of this image.
     */
    static void runByPixelsMask( vector<KeyPoint>& keypoints, const Mat& mask );
    /*
     * Remove duplicated keypoints.
     */
    static void removeDuplicated( vector<KeyPoint>& keypoints );

    /*
     * Retain the specified number of the best keypoints (according to the response)
     */
    static void retainBest( vector<KeyPoint>& keypoints, int npoints );
};


/************************************ Base Classes ************************************/

/*
 * Abstract base class for 2D image feature detectors.
 */
class CV_EXPORTS_W FeatureDetector : public virtual Algorithm
{
public:
    virtual ~FeatureDetector();

    /*
     * Detect keypoints in an image.
     * image        The image.
     * keypoints    The detected keypoints.
     * mask         Mask specifying where to look for keypoints (optional). Must be a char
     *              matrix with non-zero values in the region of interest.
     */
    CV_WRAP void detect( const Mat& image, CV_OUT vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    /*
     * Detect keypoints in an image set.
     * images       Image collection.
     * keypoints    Collection of keypoints detected in an input images. keypoints[i] is a set of keypoints detected in an images[i].
     * masks        Masks for image set. masks[i] is a mask for images[i].
     */
    void detect( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, const vector<Mat>& masks=vector<Mat>() ) const;

    // Return true if detector object is empty
    CV_WRAP virtual bool empty() const;

    // Create feature detector by detector name.
    CV_WRAP static Ptr<FeatureDetector> create( const string& detectorType );

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const = 0;

    /*
     * Remove keypoints that are not in the mask.
     * Helper function, useful when wrapping a library call for keypoint detection that
     * does not support a mask argument.
     */
    static void removeInvalidPoints( const Mat& mask, vector<KeyPoint>& keypoints );
};


/*
 * Abstract base class for computing descriptors for image keypoints.
 *
 * In this interface we assume a keypoint descriptor can be represented as a
 * dense, fixed-dimensional vector of some basic type. Most descriptors used
 * in practice follow this pattern, as it makes it very easy to compute
 * distances between descriptors. Therefore we represent a collection of
 * descriptors as a Mat, where each row is one keypoint descriptor.
 */
class CV_EXPORTS_W DescriptorExtractor : public virtual Algorithm
{
public:
    virtual ~DescriptorExtractor();

    /*
     * Compute the descriptors for a set of keypoints in an image.
     * image        The image.
     * keypoints    The input keypoints. Keypoints for which a descriptor cannot be computed are removed.
     * descriptors  Copmputed descriptors. Row i is the descriptor for keypoint i.
     */
    CV_WRAP void compute( const Mat& image, CV_OUT CV_IN_OUT vector<KeyPoint>& keypoints, CV_OUT Mat& descriptors ) const;

    /*
     * Compute the descriptors for a keypoints collection detected in image collection.
     * images       Image collection.
     * keypoints    Input keypoints collection. keypoints[i] is keypoints detected in images[i].
     *              Keypoints for which a descriptor cannot be computed are removed.
     * descriptors  Descriptor collection. descriptors[i] are descriptors computed for set keypoints[i].
     */
    void compute( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, vector<Mat>& descriptors ) const;

    CV_WRAP virtual int descriptorSize() const = 0;
    CV_WRAP virtual int descriptorType() const = 0;

    CV_WRAP virtual bool empty() const;

    CV_WRAP static Ptr<DescriptorExtractor> create( const string& descriptorExtractorType );

protected:
    virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const = 0;

    /*
     * Remove keypoints within borderPixels of an image edge.
     */
    static void removeBorderKeypoints( vector<KeyPoint>& keypoints,
                                      Size imageSize, int borderSize );
};



/*
 * Abstract base class for simultaneous 2D feature detection descriptor extraction.
 */
class CV_EXPORTS_W Feature2D : public FeatureDetector, public DescriptorExtractor
{
public:
    /*
     * Detect keypoints in an image.
     * image        The image.
     * keypoints    The detected keypoints.
     * mask         Mask specifying where to look for keypoints (optional). Must be a char
     *              matrix with non-zero values in the region of interest.
     * useProvidedKeypoints If true, the method will skip the detection phase and will compute
     *                      descriptors for the provided keypoints
     */
    CV_WRAP_AS(detectAndCompute) virtual void operator()( InputArray image, InputArray mask,
                                     CV_OUT vector<KeyPoint>& keypoints,
                                     OutputArray descriptors,
                                     bool useProvidedKeypoints=false ) const = 0;

    CV_WRAP void compute( const Mat& image, CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints, CV_OUT Mat& descriptors ) const;

    // Create feature detector and descriptor extractor by name.
    CV_WRAP static Ptr<Feature2D> create( const string& name );
};

/*!
  BRISK implementation
*/
class CV_EXPORTS_W BRISK : public Feature2D
{
public:
    CV_WRAP explicit BRISK(int thresh=30, int octaves=3, float patternScale=1.0f);

    virtual ~BRISK();

    // returns the descriptor size in bytes
    int descriptorSize() const;
    // returns the descriptor type
    int descriptorType() const;

    // Compute the BRISK features on an image
    void operator()(InputArray image, InputArray mask, vector<KeyPoint>& keypoints) const;

    // Compute the BRISK features and descriptors on an image
    void operator()( InputArray image, InputArray mask, vector<KeyPoint>& keypoints,
                      OutputArray descriptors, bool useProvidedKeypoints=false ) const;

    AlgorithmInfo* info() const;

    // custom setup
    CV_WRAP explicit BRISK(std::vector<float> &radiusList, std::vector<int> &numberList,
        float dMax=5.85f, float dMin=8.2f, std::vector<int> indexChange=std::vector<int>());

    // call this to generate the kernel:
    // circle of radius r (pixels), with n points;
    // short pairings with dMax, long pairings with dMin
    CV_WRAP void generateKernel(std::vector<float> &radiusList,
        std::vector<int> &numberList, float dMax=5.85f, float dMin=8.2f,
        std::vector<int> indexChange=std::vector<int>());

protected:

    void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
    void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    void computeKeypointsNoOrientation(InputArray image, InputArray mask, vector<KeyPoint>& keypoints) const;
    void computeDescriptorsAndOrOrientation(InputArray image, InputArray mask, vector<KeyPoint>& keypoints,
                                       OutputArray descriptors, bool doDescriptors, bool doOrientation,
                                       bool useProvidedKeypoints) const;

    // Feature parameters
    CV_PROP_RW int threshold;
    CV_PROP_RW int octaves;

    // some helper structures for the Brisk pattern representation
    struct BriskPatternPoint{
        float x;         // x coordinate relative to center
        float y;         // x coordinate relative to center
        float sigma;     // Gaussian smoothing sigma
    };
    struct BriskShortPair{
        unsigned int i;  // index of the first pattern point
        unsigned int j;  // index of other pattern point
    };
    struct BriskLongPair{
        unsigned int i;  // index of the first pattern point
        unsigned int j;  // index of other pattern point
        int weighted_dx; // 1024.0/dx
        int weighted_dy; // 1024.0/dy
    };
    inline int smoothedIntensity(const cv::Mat& image,
                const cv::Mat& integral,const float key_x,
                const float key_y, const unsigned int scale,
                const unsigned int rot, const unsigned int point) const;
    // pattern properties
    BriskPatternPoint* patternPoints_;     //[i][rotation][scale]
    unsigned int points_;                 // total number of collocation points
    float* scaleList_;                     // lists the scaling per scale index [scale]
    unsigned int* sizeList_;             // lists the total pattern size per scale index [scale]
    static const unsigned int scales_;    // scales discretization
    static const float scalerange_;     // span of sizes 40->4 Octaves - else, this needs to be adjusted...
    static const unsigned int n_rot_;    // discretization of the rotation look-up

    // pairs
    int strings_;                        // number of uchars the descriptor consists of
    float dMax_;                         // short pair maximum distance
    float dMin_;                         // long pair maximum distance
    BriskShortPair* shortPairs_;         // d<_dMax
    BriskLongPair* longPairs_;             // d>_dMin
    unsigned int noShortPairs_;         // number of shortParis
    unsigned int noLongPairs_;             // number of longParis

    // general
    static const float basicSize_;
};


/*!
 ORB implementation.
*/
class CV_EXPORTS_W ORB : public Feature2D
{
public:
    // the size of the signature in bytes
    enum { kBytes = 32, HARRIS_SCORE=0, FAST_SCORE=1 };

    CV_WRAP explicit ORB(int nfeatures = 500, float scaleFactor = 1.2f, int nlevels = 8, int edgeThreshold = 31,
        int firstLevel = 0, int WTA_K=2, int scoreType=ORB::HARRIS_SCORE, int patchSize=31 );

    // returns the descriptor size in bytes
    int descriptorSize() const;
    // returns the descriptor type
    int descriptorType() const;

    // Compute the ORB features and descriptors on an image
    void operator()(InputArray image, InputArray mask, vector<KeyPoint>& keypoints) const;

    // Compute the ORB features and descriptors on an image
    void operator()( InputArray image, InputArray mask, vector<KeyPoint>& keypoints,
                     OutputArray descriptors, bool useProvidedKeypoints=false ) const;

    AlgorithmInfo* info() const;

protected:

    void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
    void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    CV_PROP_RW int nfeatures;
    CV_PROP_RW double scaleFactor;
    CV_PROP_RW int nlevels;
    CV_PROP_RW int edgeThreshold;
    CV_PROP_RW int firstLevel;
    CV_PROP_RW int WTA_K;
    CV_PROP_RW int scoreType;
    CV_PROP_RW int patchSize;
};

typedef ORB OrbFeatureDetector;
typedef ORB OrbDescriptorExtractor;

/*!
  FREAK implementation
*/
class CV_EXPORTS FREAK : public DescriptorExtractor
{
public:
    /** Constructor
         * @param orientationNormalized enable orientation normalization
         * @param scaleNormalized enable scale normalization
         * @param patternScale scaling of the description pattern
         * @param nbOctave number of octaves covered by the detected keypoints
         * @param selectedPairs (optional) user defined selected pairs
    */
    explicit FREAK( bool orientationNormalized = true,
           bool scaleNormalized = true,
           float patternScale = 22.0f,
           int nOctaves = 4,
           const vector<int>& selectedPairs = vector<int>());
    FREAK( const FREAK& rhs );
    FREAK& operator=( const FREAK& );

    virtual ~FREAK();

    /** returns the descriptor length in bytes */
    virtual int descriptorSize() const;

    /** returns the descriptor type */
    virtual int descriptorType() const;

    /** select the 512 "best description pairs"
         * @param images grayscale images set
         * @param keypoints set of detected keypoints
         * @param corrThresh correlation threshold
         * @param verbose print construction information
         * @return list of best pair indexes
    */
    vector<int> selectPairs( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints,
                      const double corrThresh = 0.7, bool verbose = true );

    AlgorithmInfo* info() const;

    enum
    {
        NB_SCALES = 64, NB_PAIRS = 512, NB_ORIENPAIRS = 45
    };

protected:
    virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
    void buildPattern();
    uchar meanIntensity( const Mat& image, const Mat& integral, const float kp_x, const float kp_y,
                         const unsigned int scale, const unsigned int rot, const unsigned int point ) const;

    bool orientationNormalized; //true if the orientation is normalized, false otherwise
    bool scaleNormalized; //true if the scale is normalized, false otherwise
    double patternScale; //scaling of the pattern
    int nOctaves; //number of octaves
    bool extAll; // true if all pairs need to be extracted for pairs selection

    double patternScale0;
    int nOctaves0;
    vector<int> selectedPairs0;

    struct PatternPoint
    {
        float x; // x coordinate relative to center
        float y; // x coordinate relative to center
        float sigma; // Gaussian smoothing sigma
    };

    struct DescriptionPair
    {
        uchar i; // index of the first point
        uchar j; // index of the second point
    };

    struct OrientationPair
    {
        uchar i; // index of the first point
        uchar j; // index of the second point
        int weight_dx; // dx/(norm_sq))*4096
        int weight_dy; // dy/(norm_sq))*4096
    };

    vector<PatternPoint> patternLookup; // look-up table for the pattern points (position+sigma of all points at all scales and orientation)
    int patternSizes[NB_SCALES]; // size of the pattern at a specific scale (used to check if a point is within image boundaries)
    DescriptionPair descriptionPairs[NB_PAIRS];
    OrientationPair orientationPairs[NB_ORIENPAIRS];
};


/*!
 Maximal Stable Extremal Regions class.

 The class implements MSER algorithm introduced by J. Matas.
 Unlike SIFT, SURF and many other detectors in OpenCV, this is salient region detector,
 not the salient point detector.

 It returns the regions, each of those is encoded as a contour.
*/
class CV_EXPORTS_W MSER : public FeatureDetector
{
public:
    //! the full constructor
    CV_WRAP explicit MSER( int _delta=5, int _min_area=60, int _max_area=14400,
          double _max_variation=0.25, double _min_diversity=.2,
          int _max_evolution=200, double _area_threshold=1.01,
          double _min_margin=0.003, int _edge_blur_size=5 );

    //! the operator that extracts the MSERs from the image or the specific part of it
    CV_WRAP_AS(detect) void operator()( const Mat& image, CV_OUT vector<vector<Point> >& msers,
                                        const Mat& mask=Mat() ) const;
    AlgorithmInfo* info() const;

protected:
    void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    int delta;
    int minArea;
    int maxArea;
    double maxVariation;
    double minDiversity;
    int maxEvolution;
    double areaThreshold;
    double minMargin;
    int edgeBlurSize;
};

typedef MSER MserFeatureDetector;

/*!
 The "Star" Detector.

 The class implements the keypoint detector introduced by K. Konolige.
*/
class CV_EXPORTS_W StarDetector : public FeatureDetector
{
public:
    //! the full constructor
    CV_WRAP StarDetector(int _maxSize=45, int _responseThreshold=30,
                 int _lineThresholdProjected=10,
                 int _lineThresholdBinarized=8,
                 int _suppressNonmaxSize=5);

    //! finds the keypoints in the image
    CV_WRAP_AS(detect) void operator()(const Mat& image,
                CV_OUT vector<KeyPoint>& keypoints) const;

    AlgorithmInfo* info() const;

protected:
    void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    int maxSize;
    int responseThreshold;
    int lineThresholdProjected;
    int lineThresholdBinarized;
    int suppressNonmaxSize;
};

//! detects corners using FAST algorithm by E. Rosten
CV_EXPORTS void FAST( InputArray image, CV_OUT vector<KeyPoint>& keypoints,
                      int threshold, bool nonmaxSuppression=true );

CV_EXPORTS void FASTX( InputArray image, CV_OUT vector<KeyPoint>& keypoints,
                      int threshold, bool nonmaxSuppression, int type );

class CV_EXPORTS_W FastFeatureDetector : public FeatureDetector
{
public:

    enum
    { // Define it in old class to simplify migration to 2.5
      TYPE_5_8 = 0, TYPE_7_12 = 1, TYPE_9_16 = 2
    };

    CV_WRAP FastFeatureDetector( int threshold=10, bool nonmaxSuppression=true );
    AlgorithmInfo* info() const;

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    int threshold;
    bool nonmaxSuppression;
};


class CV_EXPORTS_W GFTTDetector : public FeatureDetector
{
public:
    CV_WRAP GFTTDetector( int maxCorners=1000, double qualityLevel=0.01, double minDistance=1,
                          int blockSize=3, bool useHarrisDetector=false, double k=0.04 );
    AlgorithmInfo* info() const;

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    int nfeatures;
    double qualityLevel;
    double minDistance;
    int blockSize;
    bool useHarrisDetector;
    double k;
};

typedef GFTTDetector GoodFeaturesToTrackDetector;
typedef StarDetector StarFeatureDetector;

class CV_EXPORTS_W SimpleBlobDetector : public FeatureDetector
{
public:
  struct CV_EXPORTS_W_SIMPLE Params
  {
      CV_WRAP Params();
      CV_PROP_RW float thresholdStep;
      CV_PROP_RW float minThreshold;
      CV_PROP_RW float maxThreshold;
      CV_PROP_RW size_t minRepeatability;
      CV_PROP_RW float minDistBetweenBlobs;

      CV_PROP_RW bool filterByColor;
      CV_PROP_RW uchar blobColor;

      CV_PROP_RW bool filterByArea;
      CV_PROP_RW float minArea, maxArea;

      CV_PROP_RW bool filterByCircularity;
      CV_PROP_RW float minCircularity, maxCircularity;

      CV_PROP_RW bool filterByInertia;
      CV_PROP_RW float minInertiaRatio, maxInertiaRatio;

      CV_PROP_RW bool filterByConvexity;
      CV_PROP_RW float minConvexity, maxConvexity;

      void read( const FileNode& fn );
      void write( FileStorage& fs ) const;
  };

  CV_WRAP SimpleBlobDetector(const SimpleBlobDetector::Params &parameters = SimpleBlobDetector::Params());

  virtual void read( const FileNode& fn );
  virtual void write( FileStorage& fs ) const;

protected:
  struct CV_EXPORTS Center
  {
      Point2d location;
      double radius;
      double confidence;
  };

  virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
  virtual void findBlobs(const Mat &image, const Mat &binaryImage, vector<Center> &centers) const;

  Params params;
  AlgorithmInfo* info() const;
};


class CV_EXPORTS DenseFeatureDetector : public FeatureDetector
{
public:
    explicit DenseFeatureDetector( float initFeatureScale=1.f, int featureScaleLevels=1,
                                   float featureScaleMul=0.1f,
                                   int initXyStep=6, int initImgBound=0,
                                   bool varyXyStepWithScale=true,
                                   bool varyImgBoundWithScale=false );
    AlgorithmInfo* info() const;

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    double initFeatureScale;
    int featureScaleLevels;
    double featureScaleMul;

    int initXyStep;
    int initImgBound;

    bool varyXyStepWithScale;
    bool varyImgBoundWithScale;
};

/*
 * Adapts a detector to partition the source image into a grid and detect
 * points in each cell.
 */
class CV_EXPORTS_W GridAdaptedFeatureDetector : public FeatureDetector
{
public:
    /*
     * detector            Detector that will be adapted.
     * maxTotalKeypoints   Maximum count of keypoints detected on the image. Only the strongest keypoints
     *                      will be keeped.
     * gridRows            Grid rows count.
     * gridCols            Grid column count.
     */
    CV_WRAP GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector=0,
                                        int maxTotalKeypoints=1000,
                                        int gridRows=4, int gridCols=4 );

    // TODO implement read/write
    virtual bool empty() const;

    AlgorithmInfo* info() const;

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    Ptr<FeatureDetector> detector;
    int maxTotalKeypoints;
    int gridRows;
    int gridCols;
};

/*
 * Adapts a detector to detect points over multiple levels of a Gaussian
 * pyramid. Useful for detectors that are not inherently scaled.
 */
class CV_EXPORTS_W PyramidAdaptedFeatureDetector : public FeatureDetector
{
public:
    // maxLevel - The 0-based index of the last pyramid layer
    CV_WRAP PyramidAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector, int maxLevel=2 );

    // TODO implement read/write
    virtual bool empty() const;

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    Ptr<FeatureDetector> detector;
    int maxLevel;
};

/** \brief A feature detector parameter adjuster, this is used by the DynamicAdaptedFeatureDetector
 *  and is a wrapper for FeatureDetector that allow them to be adjusted after a detection
 */
class CV_EXPORTS AdjusterAdapter: public FeatureDetector
{
public:
    /** pure virtual interface
     */
    virtual ~AdjusterAdapter() {}
    /** too few features were detected so, adjust the detector params accordingly
     * \param min the minimum number of desired features
     * \param n_detected the number previously detected
     */
    virtual void tooFew(int min, int n_detected) = 0;
    /** too many features were detected so, adjust the detector params accordingly
     * \param max the maximum number of desired features
     * \param n_detected the number previously detected
     */
    virtual void tooMany(int max, int n_detected) = 0;
    /** are params maxed out or still valid?
     * \return false if the parameters can't be adjusted any more
     */
    virtual bool good() const = 0;

    virtual Ptr<AdjusterAdapter> clone() const = 0;

    static Ptr<AdjusterAdapter> create( const string& detectorType );
};
/** \brief an adaptively adjusting detector that iteratively detects until the desired number
 * of features are detected.
 *  Beware that this is not thread safe - as the adjustment of parameters breaks the const
 *  of the detection routine...
 *  /TODO Make this const correct and thread safe
 *
 *  sample usage:
 //will create a detector that attempts to find 100 - 110 FAST Keypoints, and will at most run
 //FAST feature detection 10 times until that number of keypoints are found
 Ptr<FeatureDetector> detector(new DynamicAdaptedFeatureDetector(new FastAdjuster(20,true),100, 110, 10));

 */
class CV_EXPORTS DynamicAdaptedFeatureDetector: public FeatureDetector
{
public:

    /** \param adjuster an AdjusterAdapter that will do the detection and parameter adjustment
     *  \param max_features the maximum desired number of features
     *  \param max_iters the maximum number of times to try to adjust the feature detector params
     *          for the FastAdjuster this can be high, but with Star or Surf this can get time consuming
     *  \param min_features the minimum desired features
     */
    DynamicAdaptedFeatureDetector( const Ptr<AdjusterAdapter>& adjuster, int min_features=400, int max_features=500, int max_iters=5 );

    virtual bool empty() const;

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

private:
    DynamicAdaptedFeatureDetector& operator=(const DynamicAdaptedFeatureDetector&);
    DynamicAdaptedFeatureDetector(const DynamicAdaptedFeatureDetector&);

    int escape_iters_;
    int min_features_, max_features_;
    const Ptr<AdjusterAdapter> adjuster_;
};

/**\brief an adjust for the FAST detector. This will basically decrement or increment the
 * threshold by 1
 */
class CV_EXPORTS FastAdjuster: public AdjusterAdapter
{
public:
    /**\param init_thresh the initial threshold to start with, default = 20
     * \param nonmax whether to use non max or not for fast feature detection
     */
    FastAdjuster(int init_thresh=20, bool nonmax=true, int min_thresh=1, int max_thresh=200);

    virtual void tooFew(int minv, int n_detected);
    virtual void tooMany(int maxv, int n_detected);
    virtual bool good() const;

    virtual Ptr<AdjusterAdapter> clone() const;

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    int thresh_;
    bool nonmax_;
    int init_thresh_, min_thresh_, max_thresh_;
};


/** An adjuster for StarFeatureDetector, this one adjusts the responseThreshold for now
 * TODO find a faster way to converge the parameters for Star - use CvStarDetectorParams
 */
class CV_EXPORTS StarAdjuster: public AdjusterAdapter
{
public:
    StarAdjuster(double initial_thresh=30.0, double min_thresh=2., double max_thresh=200.);

    virtual void tooFew(int minv, int n_detected);
    virtual void tooMany(int maxv, int n_detected);
    virtual bool good() const;

    virtual Ptr<AdjusterAdapter> clone() const;

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    double thresh_, init_thresh_, min_thresh_, max_thresh_;
};

class CV_EXPORTS SurfAdjuster: public AdjusterAdapter
{
public:
    SurfAdjuster( double initial_thresh=400.f, double min_thresh=2, double max_thresh=1000 );

    virtual void tooFew(int minv, int n_detected);
    virtual void tooMany(int maxv, int n_detected);
    virtual bool good() const;

    virtual Ptr<AdjusterAdapter> clone() const;

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    double thresh_, init_thresh_, min_thresh_, max_thresh_;
};

CV_EXPORTS Mat windowedMatchingMask( const vector<KeyPoint>& keypoints1, const vector<KeyPoint>& keypoints2,
                                     float maxDeltaX, float maxDeltaY );



/*
 * OpponentColorDescriptorExtractor
 *
 * Adapts a descriptor extractor to compute descripors in Opponent Color Space
 * (refer to van de Sande et al., CGIV 2008 "Color Descriptors for Object Category Recognition").
 * Input RGB image is transformed in Opponent Color Space. Then unadapted descriptor extractor
 * (set in constructor) computes descriptors on each of the three channel and concatenate
 * them into a single color descriptor.
 */
class CV_EXPORTS OpponentColorDescriptorExtractor : public DescriptorExtractor
{
public:
    OpponentColorDescriptorExtractor( const Ptr<DescriptorExtractor>& descriptorExtractor );

    virtual void read( const FileNode& );
    virtual void write( FileStorage& ) const;

    virtual int descriptorSize() const;
    virtual int descriptorType() const;

    virtual bool empty() const;

protected:
    virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;

    Ptr<DescriptorExtractor> descriptorExtractor;
};

/*
 * BRIEF Descriptor
 */
class CV_EXPORTS BriefDescriptorExtractor : public DescriptorExtractor
{
public:
    static const int PATCH_SIZE = 48;
    static const int KERNEL_SIZE = 9;

    // bytes is a length of descriptor in bytes. It can be equal 16, 32 or 64 bytes.
    BriefDescriptorExtractor( int bytes = 32 );

    virtual void read( const FileNode& );
    virtual void write( FileStorage& ) const;

    virtual int descriptorSize() const;
    virtual int descriptorType() const;

    /// @todo read and write for brief

    AlgorithmInfo* info() const;

protected:
    virtual void computeImpl(const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors) const;

    typedef void(*PixelTestFn)(const Mat&, const vector<KeyPoint>&, Mat&);

    int bytes_;
    PixelTestFn test_fn_;
};


/****************************************************************************************\
*                                      Distance                                          *
\****************************************************************************************/

template<typename T>
struct CV_EXPORTS Accumulator
{
    typedef T Type;
};

template<> struct Accumulator<unsigned char>  { typedef float Type; };
template<> struct Accumulator<unsigned short> { typedef float Type; };
template<> struct Accumulator<char>   { typedef float Type; };
template<> struct Accumulator<short>  { typedef float Type; };

/*
 * Squared Euclidean distance functor
 */
template<class T>
struct CV_EXPORTS SL2
{
    enum { normType = NORM_L2SQR };
    typedef T ValueType;
    typedef typename Accumulator<T>::Type ResultType;

    ResultType operator()( const T* a, const T* b, int size ) const
    {
        return normL2Sqr<ValueType, ResultType>(a, b, size);
    }
};

/*
 * Euclidean distance functor
 */
template<class T>
struct CV_EXPORTS L2
{
    enum { normType = NORM_L2 };
    typedef T ValueType;
    typedef typename Accumulator<T>::Type ResultType;

    ResultType operator()( const T* a, const T* b, int size ) const
    {
        return (ResultType)sqrt((double)normL2Sqr<ValueType, ResultType>(a, b, size));
    }
};

/*
 * Manhattan distance (city block distance) functor
 */
template<class T>
struct CV_EXPORTS L1
{
    enum { normType = NORM_L1 };
    typedef T ValueType;
    typedef typename Accumulator<T>::Type ResultType;

    ResultType operator()( const T* a, const T* b, int size ) const
    {
        return normL1<ValueType, ResultType>(a, b, size);
    }
};

/*
 * Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
 * bit count of A exclusive XOR'ed with B
 */
struct CV_EXPORTS Hamming
{
    enum { normType = NORM_HAMMING };
    typedef unsigned char ValueType;
    typedef int ResultType;

    /** this will count the bits in a ^ b
     */
    ResultType operator()( const unsigned char* a, const unsigned char* b, int size ) const
    {
        return normHamming(a, b, size);
    }
};

typedef Hamming HammingLUT;

template<int cellsize> struct HammingMultilevel
{
    enum { normType = NORM_HAMMING + (cellsize>1) };
    typedef unsigned char ValueType;
    typedef int ResultType;

    ResultType operator()( const unsigned char* a, const unsigned char* b, int size ) const
    {
        return normHamming(a, b, size, cellsize);
    }
};

/****************************************************************************************\
*                                      DMatch                                            *
\****************************************************************************************/
/*
 * Struct for matching: query descriptor index, train descriptor index, train image index and distance between descriptors.
 */
struct CV_EXPORTS_W_SIMPLE DMatch
{
    CV_WRAP DMatch() : queryIdx(-1), trainIdx(-1), imgIdx(-1), distance(FLT_MAX) {}
    CV_WRAP DMatch( int _queryIdx, int _trainIdx, float _distance ) :
            queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(-1), distance(_distance) {}
    CV_WRAP DMatch( int _queryIdx, int _trainIdx, int _imgIdx, float _distance ) :
            queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(_imgIdx), distance(_distance) {}

    CV_PROP_RW int queryIdx; // query descriptor index
    CV_PROP_RW int trainIdx; // train descriptor index
    CV_PROP_RW int imgIdx;   // train image index

    CV_PROP_RW float distance;

    // less is better
    bool operator<( const DMatch &m ) const
    {
        return distance < m.distance;
    }
};

/****************************************************************************************\
*                                  DescriptorMatcher                                     *
\****************************************************************************************/
/*
 * Abstract base class for matching two sets of descriptors.
 */
class CV_EXPORTS_W DescriptorMatcher : public Algorithm
{
public:
    virtual ~DescriptorMatcher();

    /*
     * Add descriptors to train descriptor collection.
     * descriptors      Descriptors to add. Each descriptors[i] is a descriptors set from one image.
     */
    CV_WRAP virtual void add( const vector<Mat>& descriptors );
    /*
     * Get train descriptors collection.
     */
    CV_WRAP const vector<Mat>& getTrainDescriptors() const;
    /*
     * Clear train descriptors collection.
     */
    CV_WRAP virtual void clear();

    /*
     * Return true if there are not train descriptors in collection.
     */
    CV_WRAP virtual bool empty() const;
    /*
     * Return true if the matcher supports mask in match methods.
     */
    CV_WRAP virtual bool isMaskSupported() const = 0;

    /*
     * Train matcher (e.g. train flann index).
     * In all methods to match the method train() is run every time before matching.
     * Some descriptor matchers (e.g. BruteForceMatcher) have empty implementation
     * of this method, other matchers really train their inner structures
     * (e.g. FlannBasedMatcher trains flann::Index). So nonempty implementation
     * of train() should check the class object state and do traing/retraining
     * only if the state requires that (e.g. FlannBasedMatcher trains flann::Index
     * if it has not trained yet or if new descriptors have been added to the train
     * collection).
     */
    CV_WRAP virtual void train();
    /*
     * Group of methods to match descriptors from image pair.
     * Method train() is run in this methods.
     */
    // Find one best match for each query descriptor (if mask is empty).
    CV_WRAP void match( const Mat& queryDescriptors, const Mat& trainDescriptors,
                CV_OUT vector<DMatch>& matches, const Mat& mask=Mat() ) const;
    // Find k best matches for each query descriptor (in increasing order of distances).
    // compactResult is used when mask is not empty. If compactResult is false matches
    // vector will have the same size as queryDescriptors rows. If compactResult is true
    // matches vector will not contain matches for fully masked out query descriptors.
    CV_WRAP void knnMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
                   CV_OUT vector<vector<DMatch> >& matches, int k,
                   const Mat& mask=Mat(), bool compactResult=false ) const;
    // Find best matches for each query descriptor which have distance less than
    // maxDistance (in increasing order of distances).
    void radiusMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
                      vector<vector<DMatch> >& matches, float maxDistance,
                      const Mat& mask=Mat(), bool compactResult=false ) const;
    /*
     * Group of methods to match descriptors from one image to image set.
     * See description of similar methods for matching image pair above.
     */
    CV_WRAP void match( const Mat& queryDescriptors, CV_OUT vector<DMatch>& matches,
                const vector<Mat>& masks=vector<Mat>() );
    CV_WRAP void knnMatch( const Mat& queryDescriptors, CV_OUT vector<vector<DMatch> >& matches, int k,
           const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
    void radiusMatch( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
                   const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );

    // Reads matcher object from a file node
    virtual void read( const FileNode& );
    // Writes matcher object to a file storage
    virtual void write( FileStorage& ) const;

    // Clone the matcher. If emptyTrainData is false the method create deep copy of the object, i.e. copies
    // both parameters and train data. If emptyTrainData is true the method create object copy with current parameters
    // but with empty train data.
    virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;

    CV_WRAP static Ptr<DescriptorMatcher> create( const string& descriptorMatcherType );
protected:
    /*
     * Class to work with descriptors from several images as with one merged matrix.
     * It is used e.g. in FlannBasedMatcher.
     */
    class CV_EXPORTS DescriptorCollection
    {
    public:
        DescriptorCollection();
        DescriptorCollection( const DescriptorCollection& collection );
        virtual ~DescriptorCollection();

        // Vector of matrices "descriptors" will be merged to one matrix "mergedDescriptors" here.
        void set( const vector<Mat>& descriptors );
        virtual void clear();

        const Mat& getDescriptors() const;
        const Mat getDescriptor( int imgIdx, int localDescIdx ) const;
        const Mat getDescriptor( int globalDescIdx ) const;
        void getLocalIdx( int globalDescIdx, int& imgIdx, int& localDescIdx ) const;

        int size() const;

    protected:
        Mat mergedDescriptors;
        vector<int> startIdxs;
    };

    // In fact the matching is implemented only by the following two methods. These methods suppose
    // that the class object has been trained already. Public match methods call these methods
    // after calling train().
    virtual void knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k,
           const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ) = 0;
    virtual void radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
           const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ) = 0;

    static bool isPossibleMatch( const Mat& mask, int queryIdx, int trainIdx );
    static bool isMaskedOut( const vector<Mat>& masks, int queryIdx );

    static Mat clone_op( Mat m ) { return m.clone(); }
    void checkMasks( const vector<Mat>& masks, int queryDescriptorsCount ) const;

    // Collection of descriptors from train images.
    vector<Mat> trainDescCollection;
};

/*
 * Brute-force descriptor matcher.
 *
 * For each descriptor in the first set, this matcher finds the closest
 * descriptor in the second set by trying each one.
 *
 * For efficiency, BruteForceMatcher is templated on the distance metric.
 * For float descriptors, a common choice would be cv::L2<float>.
 */
class CV_EXPORTS_W BFMatcher : public DescriptorMatcher
{
public:
    CV_WRAP BFMatcher( int normType=NORM_L2, bool crossCheck=false );
    virtual ~BFMatcher() {}

    virtual bool isMaskSupported() const { return true; }

    virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const;

    AlgorithmInfo* info() const;
protected:
    virtual void knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k,
           const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
    virtual void radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
           const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );

    int normType;
    bool crossCheck;
};


/*
 * Flann based matcher
 */
class CV_EXPORTS_W FlannBasedMatcher : public DescriptorMatcher
{
public:
    CV_WRAP FlannBasedMatcher( const Ptr<flann::IndexParams>& indexParams=new flann::KDTreeIndexParams(),
                       const Ptr<flann::SearchParams>& searchParams=new flann::SearchParams() );

    virtual void add( const vector<Mat>& descriptors );
    virtual void clear();

    // Reads matcher object from a file node
    virtual void read( const FileNode& );
    // Writes matcher object to a file storage
    virtual void write( FileStorage& ) const;

    virtual void train();
    virtual bool isMaskSupported() const;

    virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const;

    AlgorithmInfo* info() const;
protected:
    static void convertToDMatches( const DescriptorCollection& descriptors,
                                   const Mat& indices, const Mat& distances,
                                   vector<vector<DMatch> >& matches );

    virtual void knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k,
                   const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
    virtual void radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
                   const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );

    Ptr<flann::IndexParams> indexParams;
    Ptr<flann::SearchParams> searchParams;
    Ptr<flann::Index> flannIndex;

    DescriptorCollection mergedDescriptors;
    int addedDescCount;
};

/****************************************************************************************\
*                                GenericDescriptorMatcher                                *
\****************************************************************************************/
/*
 *   Abstract interface for a keypoint descriptor and matcher
 */
class GenericDescriptorMatcher;
typedef GenericDescriptorMatcher GenericDescriptorMatch;

class CV_EXPORTS GenericDescriptorMatcher
{
public:
    GenericDescriptorMatcher();
    virtual ~GenericDescriptorMatcher();

    /*
     * Add train collection: images and keypoints from them.
     * images       A set of train images.
     * ketpoints    Keypoint collection that have been detected on train images.
     *
     * Keypoints for which a descriptor cannot be computed are removed. Such keypoints
     * must be filtered in this method befor adding keypoints to train collection "trainPointCollection".
     * If inheritor class need perform such prefiltering the method add() must be overloaded.
     * In the other class methods programmer has access to the train keypoints by a constant link.
     */
    virtual void add( const vector<Mat>& images,
                      vector<vector<KeyPoint> >& keypoints );

    const vector<Mat>& getTrainImages() const;
    const vector<vector<KeyPoint> >& getTrainKeypoints() const;

    /*
     * Clear images and keypoints storing in train collection.
     */
    virtual void clear();
    /*
     * Returns true if matcher supports mask to match descriptors.
     */
    virtual bool isMaskSupported() = 0;
    /*
     * Train some inner structures (e.g. flann index or decision trees).
     * train() methods is run every time in matching methods. So the method implementation
     * should has a check whether these inner structures need be trained/retrained or not.
     */
    virtual void train();

    /*
     * Classifies query keypoints.
     * queryImage    The query image
     * queryKeypoints   Keypoints from the query image
     * trainImage    The train image
     * trainKeypoints   Keypoints from the train image
     */
    // Classify keypoints from query image under one train image.
    void classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                           const Mat& trainImage, vector<KeyPoint>& trainKeypoints ) const;
    // Classify keypoints from query image under train image collection.
    void classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints );

    /*
     * Group of methods to match keypoints from image pair.
     * Keypoints for which a descriptor cannot be computed are removed.
     * train() method is called here.
     */
    // Find one best match for each query descriptor (if mask is empty).
    void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
                vector<DMatch>& matches, const Mat& mask=Mat() ) const;
    // Find k best matches for each query keypoint (in increasing order of distances).
    // compactResult is used when mask is not empty. If compactResult is false matches
    // vector will have the same size as queryDescriptors rows.
    // If compactResult is true matches vector will not contain matches for fully masked out query descriptors.
    void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                   const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
                   vector<vector<DMatch> >& matches, int k,
                   const Mat& mask=Mat(), bool compactResult=false ) const;
    // Find best matches for each query descriptor which have distance less than maxDistance (in increasing order of distances).
    void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                      const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
                      vector<vector<DMatch> >& matches, float maxDistance,
                      const Mat& mask=Mat(), bool compactResult=false ) const;
    /*
     * Group of methods to match keypoints from one image to image set.
     * See description of similar methods for matching image pair above.
     */
    void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                vector<DMatch>& matches, const vector<Mat>& masks=vector<Mat>() );
    void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                   vector<vector<DMatch> >& matches, int k,
                   const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
    void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                      vector<vector<DMatch> >& matches, float maxDistance,
                      const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );

    // Reads matcher object from a file node
    virtual void read( const FileNode& fn );
    // Writes matcher object to a file storage
    virtual void write( FileStorage& fs ) const;

    // Return true if matching object is empty (e.g. feature detector or descriptor matcher are empty)
    virtual bool empty() const;

    // Clone the matcher. If emptyTrainData is false the method create deep copy of the object, i.e. copies
    // both parameters and train data. If emptyTrainData is true the method create object copy with current parameters
    // but with empty train data.
    virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;

    static Ptr<GenericDescriptorMatcher> create( const string& genericDescritptorMatcherType,
                                                 const string &paramsFilename=string() );

protected:
    // In fact the matching is implemented only by the following two methods. These methods suppose
    // that the class object has been trained already. Public match methods call these methods
    // after calling train().
    virtual void knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                               vector<vector<DMatch> >& matches, int k,
                               const vector<Mat>& masks, bool compactResult ) = 0;
    virtual void radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                                  vector<vector<DMatch> >& matches, float maxDistance,
                                  const vector<Mat>& masks, bool compactResult ) = 0;
    /*
     * A storage for sets of keypoints together with corresponding images and class IDs
     */
    class CV_EXPORTS KeyPointCollection
    {
    public:
        KeyPointCollection();
        KeyPointCollection( const KeyPointCollection& collection );
        void add( const vector<Mat>& images, const vector<vector<KeyPoint> >& keypoints );
        void clear();

        // Returns the total number of keypoints in the collection
        size_t keypointCount() const;
        size_t imageCount() const;

        const vector<vector<KeyPoint> >& getKeypoints() const;
        const vector<KeyPoint>& getKeypoints( int imgIdx ) const;
        const KeyPoint& getKeyPoint( int imgIdx, int localPointIdx ) const;
        const KeyPoint& getKeyPoint( int globalPointIdx ) const;
        void getLocalIdx( int globalPointIdx, int& imgIdx, int& localPointIdx ) const;

        const vector<Mat>& getImages() const;
        const Mat& getImage( int imgIdx ) const;

    protected:
        int pointCount;

        vector<Mat> images;
        vector<vector<KeyPoint> > keypoints;
        // global indices of the first points in each image, startIndices.size() = keypoints.size()
        vector<int> startIndices;

    private:
        static Mat clone_op( Mat m ) { return m.clone(); }
    };

    KeyPointCollection trainPointCollection;
};


/****************************************************************************************\
*                                VectorDescriptorMatcher                                 *
\****************************************************************************************/

/*
 *  A class used for matching descriptors that can be described as vectors in a finite-dimensional space
 */
class VectorDescriptorMatcher;
typedef VectorDescriptorMatcher VectorDescriptorMatch;

class CV_EXPORTS VectorDescriptorMatcher : public GenericDescriptorMatcher
{
public:
    VectorDescriptorMatcher( const Ptr<DescriptorExtractor>& extractor, const Ptr<DescriptorMatcher>& matcher );
    virtual ~VectorDescriptorMatcher();

    virtual void add( const vector<Mat>& imgCollection,
                      vector<vector<KeyPoint> >& pointCollection );

    virtual void clear();

    virtual void train();

    virtual bool isMaskSupported();

    virtual void read( const FileNode& fn );
    virtual void write( FileStorage& fs ) const;
    virtual bool empty() const;

    virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const;

protected:
    virtual void knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                               vector<vector<DMatch> >& matches, int k,
                               const vector<Mat>& masks, bool compactResult );
    virtual void radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                                  vector<vector<DMatch> >& matches, float maxDistance,
                                  const vector<Mat>& masks, bool compactResult );

    Ptr<DescriptorExtractor> extractor;
    Ptr<DescriptorMatcher> matcher;
};

/****************************************************************************************\
*                                   Drawing functions                                    *
\****************************************************************************************/
struct CV_EXPORTS DrawMatchesFlags
{
    enum{ DEFAULT = 0, // Output image matrix will be created (Mat::create),
                       // i.e. existing memory of output image may be reused.
                       // Two source image, matches and single keypoints will be drawn.
                       // For each keypoint only the center point will be drawn (without
                       // the circle around keypoint with keypoint size and orientation).
          DRAW_OVER_OUTIMG = 1, // Output image matrix will not be created (Mat::create).
                                // Matches will be drawn on existing content of output image.
          NOT_DRAW_SINGLE_POINTS = 2, // Single keypoints will not be drawn.
          DRAW_RICH_KEYPOINTS = 4 // For each keypoint the circle around keypoint with keypoint size and
                                  // orientation will be drawn.
        };
};

// Draw keypoints.
CV_EXPORTS_W void drawKeypoints( const Mat& image, const vector<KeyPoint>& keypoints, CV_OUT Mat& outImage,
                               const Scalar& color=Scalar::all(-1), int flags=DrawMatchesFlags::DEFAULT );

// Draws matches of keypints from two images on output image.
CV_EXPORTS void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1,
                             const Mat& img2, const vector<KeyPoint>& keypoints2,
                             const vector<DMatch>& matches1to2, Mat& outImg,
                             const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
                             const vector<char>& matchesMask=vector<char>(), int flags=DrawMatchesFlags::DEFAULT );

CV_EXPORTS void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1,
                             const Mat& img2, const vector<KeyPoint>& keypoints2,
                             const vector<vector<DMatch> >& matches1to2, Mat& outImg,
                             const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
                             const vector<vector<char> >& matchesMask=vector<vector<char> >(), int flags=DrawMatchesFlags::DEFAULT );

/****************************************************************************************\
*   Functions to evaluate the feature detectors and [generic] descriptor extractors      *
\****************************************************************************************/

CV_EXPORTS void evaluateFeatureDetector( const Mat& img1, const Mat& img2, const Mat& H1to2,
                                         vector<KeyPoint>* keypoints1, vector<KeyPoint>* keypoints2,
                                         float& repeatability, int& correspCount,
                                         const Ptr<FeatureDetector>& fdetector=Ptr<FeatureDetector>() );

CV_EXPORTS void computeRecallPrecisionCurve( const vector<vector<DMatch> >& matches1to2,
                                             const vector<vector<uchar> >& correctMatches1to2Mask,
                                             vector<Point2f>& recallPrecisionCurve );

CV_EXPORTS float getRecall( const vector<Point2f>& recallPrecisionCurve, float l_precision );
CV_EXPORTS int getNearestPoint( const vector<Point2f>& recallPrecisionCurve, float l_precision );

CV_EXPORTS void evaluateGenericDescriptorMatcher( const Mat& img1, const Mat& img2, const Mat& H1to2,
                                                  vector<KeyPoint>& keypoints1, vector<KeyPoint>& keypoints2,
                                                  vector<vector<DMatch> >* matches1to2, vector<vector<uchar> >* correctMatches1to2Mask,
                                                  vector<Point2f>& recallPrecisionCurve,
                                                  const Ptr<GenericDescriptorMatcher>& dmatch=Ptr<GenericDescriptorMatcher>() );


/****************************************************************************************\
*                                     Bag of visual words                                *
\****************************************************************************************/
/*
 * Abstract base class for training of a 'bag of visual words' vocabulary from a set of descriptors
 */
class CV_EXPORTS BOWTrainer
{
public:
    BOWTrainer();
    virtual ~BOWTrainer();

    void add( const Mat& descriptors );
    const vector<Mat>& getDescriptors() const;
    int descripotorsCount() const;

    virtual void clear();

    /*
     * Train visual words vocabulary, that is cluster training descriptors and
     * compute cluster centers.
     * Returns cluster centers.
     *
     * descriptors      Training descriptors computed on images keypoints.
     */
    virtual Mat cluster() const = 0;
    virtual Mat cluster( const Mat& descriptors ) const = 0;

protected:
    vector<Mat> descriptors;
    int size;
};

/*
 * This is BOWTrainer using cv::kmeans to get vocabulary.
 */
class CV_EXPORTS BOWKMeansTrainer : public BOWTrainer
{
public:
    BOWKMeansTrainer( int clusterCount, const TermCriteria& termcrit=TermCriteria(),
                      int attempts=3, int flags=KMEANS_PP_CENTERS );
    virtual ~BOWKMeansTrainer();

    // Returns trained vocabulary (i.e. cluster centers).
    virtual Mat cluster() const;
    virtual Mat cluster( const Mat& descriptors ) const;

protected:

    int clusterCount;
    TermCriteria termcrit;
    int attempts;
    int flags;
};

/*
 * Class to compute image descriptor using bag of visual words.
 */
class CV_EXPORTS BOWImgDescriptorExtractor
{
public:
    BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor,
                               const Ptr<DescriptorMatcher>& dmatcher );
    virtual ~BOWImgDescriptorExtractor();

    void setVocabulary( const Mat& vocabulary );
    const Mat& getVocabulary() const;
    void compute( const Mat& image, vector<KeyPoint>& keypoints, Mat& imgDescriptor,
                  vector<vector<int> >* pointIdxsOfClusters=0, Mat* descriptors=0 );
    // compute() is not constant because DescriptorMatcher::match is not constant

    int descriptorSize() const;
    int descriptorType() const;

protected:
    Mat vocabulary;
    Ptr<DescriptorExtractor> dextractor;
    Ptr<DescriptorMatcher> dmatcher;
};

} /* namespace cv */

#endif /* __cplusplus */

#endif

/* End of file. */