kdtree_index.h 19.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
/***********************************************************************
 * Software License Agreement (BSD License)
 *
 * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 *
 * THE BSD LICENSE
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *************************************************************************/

#ifndef OPENCV_FLANN_KDTREE_INDEX_H_
#define OPENCV_FLANN_KDTREE_INDEX_H_

#include <algorithm>
#include <map>
#include <cassert>
#include <cstring>

#include "general.h"
#include "nn_index.h"
#include "dynamic_bitset.h"
#include "matrix.h"
#include "result_set.h"
#include "heap.h"
#include "allocator.h"
#include "random.h"
#include "saving.h"


namespace cvflann
{

struct KDTreeIndexParams : public IndexParams
{
    KDTreeIndexParams(int trees = 4)
    {
        (*this)["algorithm"] = FLANN_INDEX_KDTREE;
        (*this)["trees"] = trees;
    }
};


/**
 * Randomized kd-tree index
 *
 * Contains the k-d trees and other information for indexing a set of points
 * for nearest-neighbor matching.
 */
template <typename Distance>
class KDTreeIndex : public NNIndex<Distance>
{
public:
    typedef typename Distance::ElementType ElementType;
    typedef typename Distance::ResultType DistanceType;


    /**
     * KDTree constructor
     *
     * Params:
     *          inputData = dataset with the input features
     *          params = parameters passed to the kdtree algorithm
     */
    KDTreeIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeIndexParams(),
                Distance d = Distance() ) :
        dataset_(inputData), index_params_(params), distance_(d)
    {
        size_ = dataset_.rows;
        veclen_ = dataset_.cols;

        trees_ = get_param(index_params_,"trees",4);
        tree_roots_ = new NodePtr[trees_];

        // Create a permutable array of indices to the input vectors.
        vind_.resize(size_);
        for (size_t i = 0; i < size_; ++i) {
            vind_[i] = int(i);
        }

        mean_ = new DistanceType[veclen_];
        var_ = new DistanceType[veclen_];
    }


    KDTreeIndex(const KDTreeIndex&);
    KDTreeIndex& operator=(const KDTreeIndex&);

    /**
     * Standard destructor
     */
    ~KDTreeIndex()
    {
        if (tree_roots_!=NULL) {
            delete[] tree_roots_;
        }
        delete[] mean_;
        delete[] var_;
    }

    /**
     * Builds the index
     */
    void buildIndex()
    {
        /* Construct the randomized trees. */
        for (int i = 0; i < trees_; i++) {
            /* Randomize the order of vectors to allow for unbiased sampling. */
            std::random_shuffle(vind_.begin(), vind_.end());
            tree_roots_[i] = divideTree(&vind_[0], int(size_) );
        }
    }


    flann_algorithm_t getType() const
    {
        return FLANN_INDEX_KDTREE;
    }


    void saveIndex(FILE* stream)
    {
        save_value(stream, trees_);
        for (int i=0; i<trees_; ++i) {
            save_tree(stream, tree_roots_[i]);
        }
    }



    void loadIndex(FILE* stream)
    {
        load_value(stream, trees_);
        if (tree_roots_!=NULL) {
            delete[] tree_roots_;
        }
        tree_roots_ = new NodePtr[trees_];
        for (int i=0; i<trees_; ++i) {
            load_tree(stream,tree_roots_[i]);
        }

        index_params_["algorithm"] = getType();
        index_params_["trees"] = tree_roots_;
    }

    /**
     *  Returns size of index.
     */
    size_t size() const
    {
        return size_;
    }

    /**
     * Returns the length of an index feature.
     */
    size_t veclen() const
    {
        return veclen_;
    }

    /**
     * Computes the inde memory usage
     * Returns: memory used by the index
     */
    int usedMemory() const
    {
        return int(pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int));  // pool memory and vind array memory
    }

    /**
     * Find set of nearest neighbors to vec. Their indices are stored inside
     * the result object.
     *
     * Params:
     *     result = the result object in which the indices of the nearest-neighbors are stored
     *     vec = the vector for which to search the nearest neighbors
     *     maxCheck = the maximum number of restarts (in a best-bin-first manner)
     */
    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
    {
        int maxChecks = get_param(searchParams,"checks", 32);
        float epsError = 1+get_param(searchParams,"eps",0.0f);

        if (maxChecks==FLANN_CHECKS_UNLIMITED) {
            getExactNeighbors(result, vec, epsError);
        }
        else {
            getNeighbors(result, vec, maxChecks, epsError);
        }
    }

    IndexParams getParameters() const
    {
        return index_params_;
    }

private:


    /*--------------------- Internal Data Structures --------------------------*/
    struct Node
    {
        /**
         * Dimension used for subdivision.
         */
        int divfeat;
        /**
         * The values used for subdivision.
         */
        DistanceType divval;
        /**
         * The child nodes.
         */
        Node* child1, * child2;
    };
    typedef Node* NodePtr;
    typedef BranchStruct<NodePtr, DistanceType> BranchSt;
    typedef BranchSt* Branch;



    void save_tree(FILE* stream, NodePtr tree)
    {
        save_value(stream, *tree);
        if (tree->child1!=NULL) {
            save_tree(stream, tree->child1);
        }
        if (tree->child2!=NULL) {
            save_tree(stream, tree->child2);
        }
    }


    void load_tree(FILE* stream, NodePtr& tree)
    {
        tree = pool_.allocate<Node>();
        load_value(stream, *tree);
        if (tree->child1!=NULL) {
            load_tree(stream, tree->child1);
        }
        if (tree->child2!=NULL) {
            load_tree(stream, tree->child2);
        }
    }


    /**
     * Create a tree node that subdivides the list of vecs from vind[first]
     * to vind[last].  The routine is called recursively on each sublist.
     * Place a pointer to this new tree node in the location pTree.
     *
     * Params: pTree = the new node to create
     *                  first = index of the first vector
     *                  last = index of the last vector
     */
    NodePtr divideTree(int* ind, int count)
    {
        NodePtr node = pool_.allocate<Node>(); // allocate memory

        /* If too few exemplars remain, then make this a leaf node. */
        if ( count == 1) {
            node->child1 = node->child2 = NULL;    /* Mark as leaf node. */
            node->divfeat = *ind;    /* Store index of this vec. */
        }
        else {
            int idx;
            int cutfeat;
            DistanceType cutval;
            meanSplit(ind, count, idx, cutfeat, cutval);

            node->divfeat = cutfeat;
            node->divval = cutval;
            node->child1 = divideTree(ind, idx);
            node->child2 = divideTree(ind+idx, count-idx);
        }

        return node;
    }


    /**
     * Choose which feature to use in order to subdivide this set of vectors.
     * Make a random choice among those with the highest variance, and use
     * its variance as the threshold value.
     */
    void meanSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval)
    {
        memset(mean_,0,veclen_*sizeof(DistanceType));
        memset(var_,0,veclen_*sizeof(DistanceType));

        /* Compute mean values.  Only the first SAMPLE_MEAN values need to be
            sampled to get a good estimate.
         */
        int cnt = std::min((int)SAMPLE_MEAN+1, count);
        for (int j = 0; j < cnt; ++j) {
            ElementType* v = dataset_[ind[j]];
            for (size_t k=0; k<veclen_; ++k) {
                mean_[k] += v[k];
            }
        }
        for (size_t k=0; k<veclen_; ++k) {
            mean_[k] /= cnt;
        }

        /* Compute variances (no need to divide by count). */
        for (int j = 0; j < cnt; ++j) {
            ElementType* v = dataset_[ind[j]];
            for (size_t k=0; k<veclen_; ++k) {
                DistanceType dist = v[k] - mean_[k];
                var_[k] += dist * dist;
            }
        }
        /* Select one of the highest variance indices at random. */
        cutfeat = selectDivision(var_);
        cutval = mean_[cutfeat];

        int lim1, lim2;
        planeSplit(ind, count, cutfeat, cutval, lim1, lim2);

        if (lim1>count/2) index = lim1;
        else if (lim2<count/2) index = lim2;
        else index = count/2;

        /* If either list is empty, it means that all remaining features
         * are identical. Split in the middle to maintain a balanced tree.
         */
        if ((lim1==count)||(lim2==0)) index = count/2;
    }


    /**
     * Select the top RAND_DIM largest values from v and return the index of
     * one of these selected at random.
     */
    int selectDivision(DistanceType* v)
    {
        int num = 0;
        size_t topind[RAND_DIM];

        /* Create a list of the indices of the top RAND_DIM values. */
        for (size_t i = 0; i < veclen_; ++i) {
            if ((num < RAND_DIM)||(v[i] > v[topind[num-1]])) {
                /* Put this element at end of topind. */
                if (num < RAND_DIM) {
                    topind[num++] = i;            /* Add to list. */
                }
                else {
                    topind[num-1] = i;         /* Replace last element. */
                }
                /* Bubble end value down to right location by repeated swapping. */
                int j = num - 1;
                while (j > 0  &&  v[topind[j]] > v[topind[j-1]]) {
                    std::swap(topind[j], topind[j-1]);
                    --j;
                }
            }
        }
        /* Select a random integer in range [0,num-1], and return that index. */
        int rnd = rand_int(num);
        return (int)topind[rnd];
    }


    /**
     *  Subdivide the list of points by a plane perpendicular on axe corresponding
     *  to the 'cutfeat' dimension at 'cutval' position.
     *
     *  On return:
     *  dataset[ind[0..lim1-1]][cutfeat]<cutval
     *  dataset[ind[lim1..lim2-1]][cutfeat]==cutval
     *  dataset[ind[lim2..count]][cutfeat]>cutval
     */
    void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2)
    {
        /* Move vector indices for left subtree to front of list. */
        int left = 0;
        int right = count-1;
        for (;; ) {
            while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left;
            while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right;
            if (left>right) break;
            std::swap(ind[left], ind[right]); ++left; --right;
        }
        lim1 = left;
        right = count-1;
        for (;; ) {
            while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left;
            while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right;
            if (left>right) break;
            std::swap(ind[left], ind[right]); ++left; --right;
        }
        lim2 = left;
    }

    /**
     * Performs an exact nearest neighbor search. The exact search performs a full
     * traversal of the tree.
     */
    void getExactNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, float epsError)
    {
        //		checkID -= 1;  /* Set a different unique ID for each search. */

        if (trees_ > 1) {
            fprintf(stderr,"It doesn't make any sense to use more than one tree for exact search");
        }
        if (trees_>0) {
            searchLevelExact(result, vec, tree_roots_[0], 0.0, epsError);
        }
        assert(result.full());
    }

    /**
     * Performs the approximate nearest-neighbor search. The search is approximate
     * because the tree traversal is abandoned after a given number of descends in
     * the tree.
     */
    void getNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, int maxCheck, float epsError)
    {
        int i;
        BranchSt branch;

        int checkCount = 0;
        Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
        DynamicBitset checked(size_);

        /* Search once through each tree down to root. */
        for (i = 0; i < trees_; ++i) {
            searchLevel(result, vec, tree_roots_[i], 0, checkCount, maxCheck, epsError, heap, checked);
        }

        /* Keep searching other branches from heap until finished. */
        while ( heap->popMin(branch) && (checkCount < maxCheck || !result.full() )) {
            searchLevel(result, vec, branch.node, branch.mindist, checkCount, maxCheck, epsError, heap, checked);
        }

        delete heap;

        assert(result.full());
    }


    /**
     *  Search starting from a given node of the tree.  Based on any mismatches at
     *  higher levels, all exemplars below this level must have a distance of
     *  at least "mindistsq".
     */
    void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, NodePtr node, DistanceType mindist, int& checkCount, int maxCheck,
                     float epsError, Heap<BranchSt>* heap, DynamicBitset& checked)
    {
        if (result_set.worstDist()<mindist) {
            //			printf("Ignoring branch, too far\n");
            return;
        }

        /* If this is a leaf node, then do check and return. */
        if ((node->child1 == NULL)&&(node->child2 == NULL)) {
            /*  Do not check same node more than once when searching multiple trees.
                Once a vector is checked, we set its location in vind to the
                current checkID.
             */
            int index = node->divfeat;
            if ( checked.test(index) || ((checkCount>=maxCheck)&& result_set.full()) ) return;
            checked.set(index);
            checkCount++;

            DistanceType dist = distance_(dataset_[index], vec, veclen_);
            result_set.addPoint(dist,index);

            return;
        }

        /* Which child branch should be taken first? */
        ElementType val = vec[node->divfeat];
        DistanceType diff = val - node->divval;
        NodePtr bestChild = (diff < 0) ? node->child1 : node->child2;
        NodePtr otherChild = (diff < 0) ? node->child2 : node->child1;

        /* Create a branch record for the branch not taken.  Add distance
            of this feature boundary (we don't attempt to correct for any
            use of this feature in a parent node, which is unlikely to
            happen and would have only a small effect).  Don't bother
            adding more branches to heap after halfway point, as cost of
            adding exceeds their value.
         */

        DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat);
        //		if (2 * checkCount < maxCheck  ||  !result.full()) {
        if ((new_distsq*epsError < result_set.worstDist())||  !result_set.full()) {
            heap->insert( BranchSt(otherChild, new_distsq) );
        }

        /* Call recursively to search next level down. */
        searchLevel(result_set, vec, bestChild, mindist, checkCount, maxCheck, epsError, heap, checked);
    }

    /**
     * Performs an exact search in the tree starting from a node.
     */
    void searchLevelExact(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindist, const float epsError)
    {
        /* If this is a leaf node, then do check and return. */
        if ((node->child1 == NULL)&&(node->child2 == NULL)) {
            int index = node->divfeat;
            DistanceType dist = distance_(dataset_[index], vec, veclen_);
            result_set.addPoint(dist,index);
            return;
        }

        /* Which child branch should be taken first? */
        ElementType val = vec[node->divfeat];
        DistanceType diff = val - node->divval;
        NodePtr bestChild = (diff < 0) ? node->child1 : node->child2;
        NodePtr otherChild = (diff < 0) ? node->child2 : node->child1;

        /* Create a branch record for the branch not taken.  Add distance
            of this feature boundary (we don't attempt to correct for any
            use of this feature in a parent node, which is unlikely to
            happen and would have only a small effect).  Don't bother
            adding more branches to heap after halfway point, as cost of
            adding exceeds their value.
         */

        DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat);

        /* Call recursively to search next level down. */
        searchLevelExact(result_set, vec, bestChild, mindist, epsError);

        if (new_distsq*epsError<=result_set.worstDist()) {
            searchLevelExact(result_set, vec, otherChild, new_distsq, epsError);
        }
    }


private:

    enum
    {
        /**
         * To improve efficiency, only SAMPLE_MEAN random values are used to
         * compute the mean and variance at each level when building a tree.
         * A value of 100 seems to perform as well as using all values.
         */
        SAMPLE_MEAN = 100,
        /**
         * Top random dimensions to consider
         *
         * When creating random trees, the dimension on which to subdivide is
         * selected at random from among the top RAND_DIM dimensions with the
         * highest variance.  A value of 5 works well.
         */
        RAND_DIM=5
    };


    /**
     * Number of randomized trees that are used
     */
    int trees_;

    /**
     *  Array of indices to vectors in the dataset.
     */
    std::vector<int> vind_;

    /**
     * The dataset used by this index
     */
    const Matrix<ElementType> dataset_;

    IndexParams index_params_;

    size_t size_;
    size_t veclen_;


    DistanceType* mean_;
    DistanceType* var_;


    /**
     * Array of k-d trees used to find neighbours.
     */
    NodePtr* tree_roots_;

    /**
     * Pooled memory allocator.
     *
     * Using a pooled memory allocator is more efficient
     * than allocating memory directly when there is a large
     * number small of memory allocations.
     */
    PooledAllocator pool_;

    Distance distance_;


};   // class KDTreeForest

}

#endif //OPENCV_FLANN_KDTREE_INDEX_H_