legacy.hpp 133.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_LEGACY_HPP__
#define __OPENCV_LEGACY_HPP__

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/imgproc/imgproc_c.h"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/ml/ml.hpp"

#ifdef __cplusplus
extern "C" {
#endif

CVAPI(CvSeq*) cvSegmentImage( const CvArr* srcarr, CvArr* dstarr,
                                    double canny_threshold,
                                    double ffill_threshold,
                                    CvMemStorage* storage );

/****************************************************************************************\
*                                  Eigen objects                                         *
\****************************************************************************************/

typedef int (CV_CDECL * CvCallback)(int index, void* buffer, void* user_data);
typedef union
{
    CvCallback callback;
    void* data;
}
CvInput;

#define CV_EIGOBJ_NO_CALLBACK     0
#define CV_EIGOBJ_INPUT_CALLBACK  1
#define CV_EIGOBJ_OUTPUT_CALLBACK 2
#define CV_EIGOBJ_BOTH_CALLBACK   3

/* Calculates covariation matrix of a set of arrays */
CVAPI(void)  cvCalcCovarMatrixEx( int nObjects, void* input, int ioFlags,
                                  int ioBufSize, uchar* buffer, void* userData,
                                  IplImage* avg, float* covarMatrix );

/* Calculates eigen values and vectors of covariation matrix of a set of
   arrays */
CVAPI(void)  cvCalcEigenObjects( int nObjects, void* input, void* output,
                                 int ioFlags, int ioBufSize, void* userData,
                                 CvTermCriteria* calcLimit, IplImage* avg,
                                 float* eigVals );

/* Calculates dot product (obj - avg) * eigObj (i.e. projects image to eigen vector) */
CVAPI(double)  cvCalcDecompCoeff( IplImage* obj, IplImage* eigObj, IplImage* avg );

/* Projects image to eigen space (finds all decomposion coefficients */
CVAPI(void)  cvEigenDecomposite( IplImage* obj, int nEigObjs, void* eigInput,
                                 int ioFlags, void* userData, IplImage* avg,
                                 float* coeffs );

/* Projects original objects used to calculate eigen space basis to that space */
CVAPI(void)  cvEigenProjection( void* eigInput, int nEigObjs, int ioFlags,
                                void* userData, float* coeffs, IplImage* avg,
                                IplImage* proj );

/****************************************************************************************\
*                                       1D/2D HMM                                        *
\****************************************************************************************/

typedef struct CvImgObsInfo
{
    int obs_x;
    int obs_y;
    int obs_size;
    float* obs;//consequtive observations

    int* state;/* arr of pairs superstate/state to which observation belong */
    int* mix;  /* number of mixture to which observation belong */

} CvImgObsInfo;/*struct for 1 image*/

typedef CvImgObsInfo Cv1DObsInfo;

typedef struct CvEHMMState
{
    int num_mix;        /*number of mixtures in this state*/
    float* mu;          /*mean vectors corresponding to each mixture*/
    float* inv_var;     /* square root of inversed variances corresp. to each mixture*/
    float* log_var_val; /* sum of 0.5 (LN2PI + ln(variance[i]) ) for i=1,n */
    float* weight;      /*array of mixture weights. Summ of all weights in state is 1. */

} CvEHMMState;

typedef struct CvEHMM
{
    int level; /* 0 - lowest(i.e its states are real states), ..... */
    int num_states; /* number of HMM states */
    float*  transP;/*transition probab. matrices for states */
    float** obsProb; /* if level == 0 - array of brob matrices corresponding to hmm
                        if level == 1 - martix of matrices */
    union
    {
        CvEHMMState* state; /* if level == 0 points to real states array,
                               if not - points to embedded hmms */
        struct CvEHMM* ehmm; /* pointer to an embedded model or NULL, if it is a leaf */
    } u;

} CvEHMM;

/*CVAPI(int)  icvCreate1DHMM( CvEHMM** this_hmm,
                                   int state_number, int* num_mix, int obs_size );

CVAPI(int)  icvRelease1DHMM( CvEHMM** phmm );

CVAPI(int)  icvUniform1DSegm( Cv1DObsInfo* obs_info, CvEHMM* hmm );

CVAPI(int)  icvInit1DMixSegm( Cv1DObsInfo** obs_info_array, int num_img, CvEHMM* hmm);

CVAPI(int)  icvEstimate1DHMMStateParams( CvImgObsInfo** obs_info_array, int num_img, CvEHMM* hmm);

CVAPI(int)  icvEstimate1DObsProb( CvImgObsInfo* obs_info, CvEHMM* hmm );

CVAPI(int)  icvEstimate1DTransProb( Cv1DObsInfo** obs_info_array,
                                           int num_seq,
                                           CvEHMM* hmm );

CVAPI(float)  icvViterbi( Cv1DObsInfo* obs_info, CvEHMM* hmm);

CVAPI(int)  icv1DMixSegmL2( CvImgObsInfo** obs_info_array, int num_img, CvEHMM* hmm );*/

/*********************************** Embedded HMMs *************************************/

/* Creates 2D HMM */
CVAPI(CvEHMM*)  cvCreate2DHMM( int* stateNumber, int* numMix, int obsSize );

/* Releases HMM */
CVAPI(void)  cvRelease2DHMM( CvEHMM** hmm );

#define CV_COUNT_OBS(roi, win, delta, numObs )                                       \
{                                                                                    \
   (numObs)->width  =((roi)->width  -(win)->width  +(delta)->width)/(delta)->width;  \
   (numObs)->height =((roi)->height -(win)->height +(delta)->height)/(delta)->height;\
}

/* Creates storage for observation vectors */
CVAPI(CvImgObsInfo*)  cvCreateObsInfo( CvSize numObs, int obsSize );

/* Releases storage for observation vectors */
CVAPI(void)  cvReleaseObsInfo( CvImgObsInfo** obs_info );


/* The function takes an image on input and and returns the sequnce of observations
   to be used with an embedded HMM; Each observation is top-left block of DCT
   coefficient matrix */
CVAPI(void)  cvImgToObs_DCT( const CvArr* arr, float* obs, CvSize dctSize,
                             CvSize obsSize, CvSize delta );


/* Uniformly segments all observation vectors extracted from image */
CVAPI(void)  cvUniformImgSegm( CvImgObsInfo* obs_info, CvEHMM* ehmm );

/* Does mixture segmentation of the states of embedded HMM */
CVAPI(void)  cvInitMixSegm( CvImgObsInfo** obs_info_array,
                            int num_img, CvEHMM* hmm );

/* Function calculates means, variances, weights of every Gaussian mixture
   of every low-level state of embedded HMM */
CVAPI(void)  cvEstimateHMMStateParams( CvImgObsInfo** obs_info_array,
                                       int num_img, CvEHMM* hmm );

/* Function computes transition probability matrices of embedded HMM
   given observations segmentation */
CVAPI(void)  cvEstimateTransProb( CvImgObsInfo** obs_info_array,
                                  int num_img, CvEHMM* hmm );

/* Function computes probabilities of appearing observations at any state
   (i.e. computes P(obs|state) for every pair(obs,state)) */
CVAPI(void)  cvEstimateObsProb( CvImgObsInfo* obs_info,
                                CvEHMM* hmm );

/* Runs Viterbi algorithm for embedded HMM */
CVAPI(float)  cvEViterbi( CvImgObsInfo* obs_info, CvEHMM* hmm );


/* Function clusters observation vectors from several images
   given observations segmentation.
   Euclidean distance used for clustering vectors.
   Centers of clusters are given means of every mixture */
CVAPI(void)  cvMixSegmL2( CvImgObsInfo** obs_info_array,
                          int num_img, CvEHMM* hmm );

/****************************************************************************************\
*               A few functions from old stereo gesture recognition demosions            *
\****************************************************************************************/

/* Creates hand mask image given several points on the hand */
CVAPI(void)  cvCreateHandMask( CvSeq* hand_points,
                                   IplImage *img_mask, CvRect *roi);

/* Finds hand region in range image data */
CVAPI(void)  cvFindHandRegion (CvPoint3D32f* points, int count,
                                CvSeq* indexs,
                                float* line, CvSize2D32f size, int flag,
                                CvPoint3D32f* center,
                                CvMemStorage* storage, CvSeq **numbers);

/* Finds hand region in range image data (advanced version) */
CVAPI(void)  cvFindHandRegionA( CvPoint3D32f* points, int count,
                                CvSeq* indexs,
                                float* line, CvSize2D32f size, int jc,
                                CvPoint3D32f* center,
                                CvMemStorage* storage, CvSeq **numbers);

/* Calculates the cooficients of the homography matrix */
CVAPI(void)  cvCalcImageHomography( float* line, CvPoint3D32f* center,
                                    float* intrinsic, float* homography );

/****************************************************************************************\
*                           More operations on sequences                                 *
\****************************************************************************************/

/*****************************************************************************************/

#define CV_CURRENT_INT( reader ) (*((int *)(reader).ptr))
#define CV_PREV_INT( reader ) (*((int *)(reader).prev_elem))

#define  CV_GRAPH_WEIGHTED_VERTEX_FIELDS() CV_GRAPH_VERTEX_FIELDS()\
    float weight;

#define  CV_GRAPH_WEIGHTED_EDGE_FIELDS() CV_GRAPH_EDGE_FIELDS()

typedef struct CvGraphWeightedVtx
{
    CV_GRAPH_WEIGHTED_VERTEX_FIELDS()
} CvGraphWeightedVtx;

typedef struct CvGraphWeightedEdge
{
    CV_GRAPH_WEIGHTED_EDGE_FIELDS()
} CvGraphWeightedEdge;

typedef enum CvGraphWeightType
{
    CV_NOT_WEIGHTED,
    CV_WEIGHTED_VTX,
    CV_WEIGHTED_EDGE,
    CV_WEIGHTED_ALL
} CvGraphWeightType;


/* Calculates histogram of a contour */
CVAPI(void)  cvCalcPGH( const CvSeq* contour, CvHistogram* hist );

#define CV_DOMINANT_IPAN 1

/* Finds high-curvature points of the contour */
CVAPI(CvSeq*) cvFindDominantPoints( CvSeq* contour, CvMemStorage* storage,
                                   int method CV_DEFAULT(CV_DOMINANT_IPAN),
                                   double parameter1 CV_DEFAULT(0),
                                   double parameter2 CV_DEFAULT(0),
                                   double parameter3 CV_DEFAULT(0),
                                   double parameter4 CV_DEFAULT(0));

/*****************************************************************************************/


/*******************************Stereo correspondence*************************************/

typedef struct CvCliqueFinder
{
    CvGraph* graph;
    int**    adj_matr;
    int N; //graph size

    // stacks, counters etc/
    int k; //stack size
    int* current_comp;
    int** All;

    int* ne;
    int* ce;
    int* fixp; //node with minimal disconnections
    int* nod;
    int* s; //for selected candidate
    int status;
    int best_score;
    int weighted;
    int weighted_edges;
    float best_weight;
    float* edge_weights;
    float* vertex_weights;
    float* cur_weight;
    float* cand_weight;

} CvCliqueFinder;

#define CLIQUE_TIME_OFF 2
#define CLIQUE_FOUND 1
#define CLIQUE_END   0

/*CVAPI(void) cvStartFindCliques( CvGraph* graph, CvCliqueFinder* finder, int reverse,
                                   int weighted CV_DEFAULT(0),  int weighted_edges CV_DEFAULT(0));
CVAPI(int) cvFindNextMaximalClique( CvCliqueFinder* finder, int* clock_rest CV_DEFAULT(0) );
CVAPI(void) cvEndFindCliques( CvCliqueFinder* finder );

CVAPI(void) cvBronKerbosch( CvGraph* graph );*/


/*F///////////////////////////////////////////////////////////////////////////////////////
//
//    Name:    cvSubgraphWeight
//    Purpose: finds weight of subgraph in a graph
//    Context:
//    Parameters:
//      graph - input graph.
//      subgraph - sequence of pairwise different ints.  These are indices of vertices of subgraph.
//      weight_type - describes the way we measure weight.
//            one of the following:
//            CV_NOT_WEIGHTED - weight of a clique is simply its size
//            CV_WEIGHTED_VTX - weight of a clique is the sum of weights of its vertices
//            CV_WEIGHTED_EDGE - the same but edges
//            CV_WEIGHTED_ALL - the same but both edges and vertices
//      weight_vtx - optional vector of floats, with size = graph->total.
//            If weight_type is either CV_WEIGHTED_VTX or CV_WEIGHTED_ALL
//            weights of vertices must be provided.  If weight_vtx not zero
//            these weights considered to be here, otherwise function assumes
//            that vertices of graph are inherited from CvGraphWeightedVtx.
//      weight_edge - optional matrix of floats, of width and height = graph->total.
//            If weight_type is either CV_WEIGHTED_EDGE or CV_WEIGHTED_ALL
//            weights of edges ought to be supplied.  If weight_edge is not zero
//            function finds them here, otherwise function expects
//            edges of graph to be inherited from CvGraphWeightedEdge.
//            If this parameter is not zero structure of the graph is determined from matrix
//            rather than from CvGraphEdge's.  In particular, elements corresponding to
//            absent edges should be zero.
//    Returns:
//      weight of subgraph.
//    Notes:
//F*/
/*CVAPI(float) cvSubgraphWeight( CvGraph *graph, CvSeq *subgraph,
                                  CvGraphWeightType weight_type CV_DEFAULT(CV_NOT_WEIGHTED),
                                  CvVect32f weight_vtx CV_DEFAULT(0),
                                  CvMatr32f weight_edge CV_DEFAULT(0) );*/


/*F///////////////////////////////////////////////////////////////////////////////////////
//
//    Name:    cvFindCliqueEx
//    Purpose: tries to find clique with maximum possible weight in a graph
//    Context:
//    Parameters:
//      graph - input graph.
//      storage - memory storage to be used by the result.
//      is_complementary - optional flag showing whether function should seek for clique
//            in complementary graph.
//      weight_type - describes our notion about weight.
//            one of the following:
//            CV_NOT_WEIGHTED - weight of a clique is simply its size
//            CV_WEIGHTED_VTX - weight of a clique is the sum of weights of its vertices
//            CV_WEIGHTED_EDGE - the same but edges
//            CV_WEIGHTED_ALL - the same but both edges and vertices
//      weight_vtx - optional vector of floats, with size = graph->total.
//            If weight_type is either CV_WEIGHTED_VTX or CV_WEIGHTED_ALL
//            weights of vertices must be provided.  If weight_vtx not zero
//            these weights considered to be here, otherwise function assumes
//            that vertices of graph are inherited from CvGraphWeightedVtx.
//      weight_edge - optional matrix of floats, of width and height = graph->total.
//            If weight_type is either CV_WEIGHTED_EDGE or CV_WEIGHTED_ALL
//            weights of edges ought to be supplied.  If weight_edge is not zero
//            function finds them here, otherwise function expects
//            edges of graph to be inherited from CvGraphWeightedEdge.
//            Note that in case of CV_WEIGHTED_EDGE or CV_WEIGHTED_ALL
//            nonzero is_complementary implies nonzero weight_edge.
//      start_clique - optional sequence of pairwise different ints.  They are indices of
//            vertices that shall be present in the output clique.
//      subgraph_of_ban - optional sequence of (maybe equal) ints.  They are indices of
//            vertices that shall not be present in the output clique.
//      clique_weight_ptr - optional output parameter.  Weight of found clique stored here.
//      num_generations - optional number of generations in evolutionary part of algorithm,
//            zero forces to return first found clique.
//      quality - optional parameter determining degree of required quality/speed tradeoff.
//            Must be in the range from 0 to 9.
//            0 is fast and dirty, 9 is slow but hopefully yields good clique.
//    Returns:
//      sequence of pairwise different ints.
//      These are indices of vertices that form found clique.
//    Notes:
//      in cases of CV_WEIGHTED_EDGE and CV_WEIGHTED_ALL weights should be nonnegative.
//      start_clique has a priority over subgraph_of_ban.
//F*/
/*CVAPI(CvSeq*) cvFindCliqueEx( CvGraph *graph, CvMemStorage *storage,
                                 int is_complementary CV_DEFAULT(0),
                                 CvGraphWeightType weight_type CV_DEFAULT(CV_NOT_WEIGHTED),
                                 CvVect32f weight_vtx CV_DEFAULT(0),
                                 CvMatr32f weight_edge CV_DEFAULT(0),
                                 CvSeq *start_clique CV_DEFAULT(0),
                                 CvSeq *subgraph_of_ban CV_DEFAULT(0),
                                 float *clique_weight_ptr CV_DEFAULT(0),
                                 int num_generations CV_DEFAULT(3),
                                 int quality CV_DEFAULT(2) );*/


#define CV_UNDEF_SC_PARAM         12345 //default value of parameters

#define CV_IDP_BIRCHFIELD_PARAM1  25
#define CV_IDP_BIRCHFIELD_PARAM2  5
#define CV_IDP_BIRCHFIELD_PARAM3  12
#define CV_IDP_BIRCHFIELD_PARAM4  15
#define CV_IDP_BIRCHFIELD_PARAM5  25


#define  CV_DISPARITY_BIRCHFIELD  0


/*F///////////////////////////////////////////////////////////////////////////
//
//    Name:    cvFindStereoCorrespondence
//    Purpose: find stereo correspondence on stereo-pair
//    Context:
//    Parameters:
//      leftImage - left image of stereo-pair (format 8uC1).
//      rightImage - right image of stereo-pair (format 8uC1).
//   mode - mode of correspondence retrieval (now CV_DISPARITY_BIRCHFIELD only)
//      dispImage - destination disparity image
//      maxDisparity - maximal disparity
//      param1, param2, param3, param4, param5 - parameters of algorithm
//    Returns:
//    Notes:
//      Images must be rectified.
//      All images must have format 8uC1.
//F*/
CVAPI(void)
cvFindStereoCorrespondence(
                   const  CvArr* leftImage, const  CvArr* rightImage,
                   int     mode,
                   CvArr*  dispImage,
                   int     maxDisparity,
                   double  param1 CV_DEFAULT(CV_UNDEF_SC_PARAM),
                   double  param2 CV_DEFAULT(CV_UNDEF_SC_PARAM),
                   double  param3 CV_DEFAULT(CV_UNDEF_SC_PARAM),
                   double  param4 CV_DEFAULT(CV_UNDEF_SC_PARAM),
                   double  param5 CV_DEFAULT(CV_UNDEF_SC_PARAM) );

/*****************************************************************************************/
/************ Epiline functions *******************/



typedef struct CvStereoLineCoeff
{
    double Xcoef;
    double XcoefA;
    double XcoefB;
    double XcoefAB;

    double Ycoef;
    double YcoefA;
    double YcoefB;
    double YcoefAB;

    double Zcoef;
    double ZcoefA;
    double ZcoefB;
    double ZcoefAB;
}CvStereoLineCoeff;


typedef struct CvCamera
{
    float   imgSize[2]; /* size of the camera view, used during calibration */
    float   matrix[9]; /* intinsic camera parameters:  [ fx 0 cx; 0 fy cy; 0 0 1 ] */
    float   distortion[4]; /* distortion coefficients - two coefficients for radial distortion
                              and another two for tangential: [ k1 k2 p1 p2 ] */
    float   rotMatr[9];
    float   transVect[3]; /* rotation matrix and transition vector relatively
                             to some reference point in the space. */
} CvCamera;

typedef struct CvStereoCamera
{
    CvCamera* camera[2]; /* two individual camera parameters */
    float fundMatr[9]; /* fundamental matrix */

    /* New part for stereo */
    CvPoint3D32f epipole[2];
    CvPoint2D32f quad[2][4]; /* coordinates of destination quadrangle after
                                epipolar geometry rectification */
    double coeffs[2][3][3];/* coefficients for transformation */
    CvPoint2D32f border[2][4];
    CvSize warpSize;
    CvStereoLineCoeff* lineCoeffs;
    int needSwapCameras;/* flag set to 1 if need to swap cameras for good reconstruction */
    float rotMatrix[9];
    float transVector[3];
} CvStereoCamera;


typedef struct CvContourOrientation
{
    float egvals[2];
    float egvects[4];

    float max, min; // minimum and maximum projections
    int imax, imin;
} CvContourOrientation;

#define CV_CAMERA_TO_WARP 1
#define CV_WARP_TO_CAMERA 2

CVAPI(int) icvConvertWarpCoordinates(double coeffs[3][3],
                                CvPoint2D32f* cameraPoint,
                                CvPoint2D32f* warpPoint,
                                int direction);

CVAPI(int) icvGetSymPoint3D(  CvPoint3D64f pointCorner,
                            CvPoint3D64f point1,
                            CvPoint3D64f point2,
                            CvPoint3D64f *pointSym2);

CVAPI(void) icvGetPieceLength3D(CvPoint3D64f point1,CvPoint3D64f point2,double* dist);

CVAPI(int) icvCompute3DPoint(    double alpha,double betta,
                            CvStereoLineCoeff* coeffs,
                            CvPoint3D64f* point);

CVAPI(int) icvCreateConvertMatrVect( double*     rotMatr1,
                                double*     transVect1,
                                double*     rotMatr2,
                                double*     transVect2,
                                double*     convRotMatr,
                                double*     convTransVect);

CVAPI(int) icvConvertPointSystem(CvPoint3D64f  M2,
                            CvPoint3D64f* M1,
                            double*     rotMatr,
                            double*     transVect
                            );

CVAPI(int) icvComputeCoeffForStereo(  CvStereoCamera* stereoCamera);

CVAPI(int) icvGetCrossPieceVector(CvPoint2D32f p1_start,CvPoint2D32f p1_end,CvPoint2D32f v2_start,CvPoint2D32f v2_end,CvPoint2D32f *cross);
CVAPI(int) icvGetCrossLineDirect(CvPoint2D32f p1,CvPoint2D32f p2,float a,float b,float c,CvPoint2D32f* cross);
CVAPI(float) icvDefinePointPosition(CvPoint2D32f point1,CvPoint2D32f point2,CvPoint2D32f point);
CVAPI(int) icvStereoCalibration( int numImages,
                            int* nums,
                            CvSize imageSize,
                            CvPoint2D32f* imagePoints1,
                            CvPoint2D32f* imagePoints2,
                            CvPoint3D32f* objectPoints,
                            CvStereoCamera* stereoparams
                           );


CVAPI(int) icvComputeRestStereoParams(CvStereoCamera *stereoparams);

CVAPI(void) cvComputePerspectiveMap( const double coeffs[3][3], CvArr* rectMapX, CvArr* rectMapY );

CVAPI(int) icvComCoeffForLine(   CvPoint2D64f point1,
                            CvPoint2D64f point2,
                            CvPoint2D64f point3,
                            CvPoint2D64f point4,
                            double*    camMatr1,
                            double*    rotMatr1,
                            double*    transVect1,
                            double*    camMatr2,
                            double*    rotMatr2,
                            double*    transVect2,
                            CvStereoLineCoeff*    coeffs,
                            int* needSwapCameras);

CVAPI(int) icvGetDirectionForPoint(  CvPoint2D64f point,
                                double* camMatr,
                                CvPoint3D64f* direct);

CVAPI(int) icvGetCrossLines(CvPoint3D64f point11,CvPoint3D64f point12,
                       CvPoint3D64f point21,CvPoint3D64f point22,
                       CvPoint3D64f* midPoint);

CVAPI(int) icvComputeStereoLineCoeffs(   CvPoint3D64f pointA,
                                    CvPoint3D64f pointB,
                                    CvPoint3D64f pointCam1,
                                    double gamma,
                                    CvStereoLineCoeff*    coeffs);

/*CVAPI(int) icvComputeFundMatrEpipoles ( double* camMatr1,
                                    double*     rotMatr1,
                                    double*     transVect1,
                                    double*     camMatr2,
                                    double*     rotMatr2,
                                    double*     transVect2,
                                    CvPoint2D64f* epipole1,
                                    CvPoint2D64f* epipole2,
                                    double*     fundMatr);*/

CVAPI(int) icvGetAngleLine( CvPoint2D64f startPoint, CvSize imageSize,CvPoint2D64f *point1,CvPoint2D64f *point2);

CVAPI(void) icvGetCoefForPiece(   CvPoint2D64f p_start,CvPoint2D64f p_end,
                        double *a,double *b,double *c,
                        int* result);

/*CVAPI(void) icvGetCommonArea( CvSize imageSize,
                    CvPoint2D64f epipole1,CvPoint2D64f epipole2,
                    double* fundMatr,
                    double* coeff11,double* coeff12,
                    double* coeff21,double* coeff22,
                    int* result);*/

CVAPI(void) icvComputeeInfiniteProject1(double*    rotMatr,
                                     double*    camMatr1,
                                     double*    camMatr2,
                                     CvPoint2D32f point1,
                                     CvPoint2D32f *point2);

CVAPI(void) icvComputeeInfiniteProject2(double*    rotMatr,
                                     double*    camMatr1,
                                     double*    camMatr2,
                                     CvPoint2D32f* point1,
                                     CvPoint2D32f point2);

CVAPI(void) icvGetCrossDirectDirect(  double* direct1,double* direct2,
                            CvPoint2D64f *cross,int* result);

CVAPI(void) icvGetCrossPieceDirect(   CvPoint2D64f p_start,CvPoint2D64f p_end,
                            double a,double b,double c,
                            CvPoint2D64f *cross,int* result);

CVAPI(void) icvGetCrossPiecePiece( CvPoint2D64f p1_start,CvPoint2D64f p1_end,
                            CvPoint2D64f p2_start,CvPoint2D64f p2_end,
                            CvPoint2D64f* cross,
                            int* result);

CVAPI(void) icvGetPieceLength(CvPoint2D64f point1,CvPoint2D64f point2,double* dist);

CVAPI(void) icvGetCrossRectDirect(    CvSize imageSize,
                            double a,double b,double c,
                            CvPoint2D64f *start,CvPoint2D64f *end,
                            int* result);

CVAPI(void) icvProjectPointToImage(   CvPoint3D64f point,
                            double* camMatr,double* rotMatr,double* transVect,
                            CvPoint2D64f* projPoint);

CVAPI(void) icvGetQuadsTransform( CvSize        imageSize,
                        double*     camMatr1,
                        double*     rotMatr1,
                        double*     transVect1,
                        double*     camMatr2,
                        double*     rotMatr2,
                        double*     transVect2,
                        CvSize*       warpSize,
                        double quad1[4][2],
                        double quad2[4][2],
                        double*     fundMatr,
                        CvPoint3D64f* epipole1,
                        CvPoint3D64f* epipole2
                        );

CVAPI(void) icvGetQuadsTransformStruct(  CvStereoCamera* stereoCamera);

CVAPI(void) icvComputeStereoParamsForCameras(CvStereoCamera* stereoCamera);

CVAPI(void) icvGetCutPiece(   double* areaLineCoef1,double* areaLineCoef2,
                    CvPoint2D64f epipole,
                    CvSize imageSize,
                    CvPoint2D64f* point11,CvPoint2D64f* point12,
                    CvPoint2D64f* point21,CvPoint2D64f* point22,
                    int* result);

CVAPI(void) icvGetMiddleAnglePoint(   CvPoint2D64f basePoint,
                            CvPoint2D64f point1,CvPoint2D64f point2,
                            CvPoint2D64f* midPoint);

CVAPI(void) icvGetNormalDirect(double* direct,CvPoint2D64f point,double* normDirect);

CVAPI(double) icvGetVect(CvPoint2D64f basePoint,CvPoint2D64f point1,CvPoint2D64f point2);

CVAPI(void) icvProjectPointToDirect(  CvPoint2D64f point,double* lineCoeff,
                            CvPoint2D64f* projectPoint);

CVAPI(void) icvGetDistanceFromPointToDirect( CvPoint2D64f point,double* lineCoef,double*dist);

CVAPI(IplImage*) icvCreateIsometricImage( IplImage* src, IplImage* dst,
                              int desired_depth, int desired_num_channels );

CVAPI(void) cvDeInterlace( const CvArr* frame, CvArr* fieldEven, CvArr* fieldOdd );

/*CVAPI(int) icvSelectBestRt(           int           numImages,
                                    int*          numPoints,
                                    CvSize        imageSize,
                                    CvPoint2D32f* imagePoints1,
                                    CvPoint2D32f* imagePoints2,
                                    CvPoint3D32f* objectPoints,

                                    CvMatr32f     cameraMatrix1,
                                    CvVect32f     distortion1,
                                    CvMatr32f     rotMatrs1,
                                    CvVect32f     transVects1,

                                    CvMatr32f     cameraMatrix2,
                                    CvVect32f     distortion2,
                                    CvMatr32f     rotMatrs2,
                                    CvVect32f     transVects2,

                                    CvMatr32f     bestRotMatr,
                                    CvVect32f     bestTransVect
                                    );*/


/****************************************************************************************\
*                                     Contour Tree                                       *
\****************************************************************************************/

/* Contour tree header */
typedef struct CvContourTree
{
    CV_SEQUENCE_FIELDS()
    CvPoint p1;            /* the first point of the binary tree root segment */
    CvPoint p2;            /* the last point of the binary tree root segment */
} CvContourTree;

/* Builds hierarhical representation of a contour */
CVAPI(CvContourTree*)  cvCreateContourTree( const CvSeq* contour,
                                            CvMemStorage* storage,
                                            double threshold );

/* Reconstruct (completelly or partially) contour a from contour tree */
CVAPI(CvSeq*)  cvContourFromContourTree( const CvContourTree* tree,
                                         CvMemStorage* storage,
                                         CvTermCriteria criteria );

/* Compares two contour trees */
enum { CV_CONTOUR_TREES_MATCH_I1 = 1 };

CVAPI(double)  cvMatchContourTrees( const CvContourTree* tree1,
                                    const CvContourTree* tree2,
                                    int method, double threshold );

/****************************************************************************************\
*                                   Contour Morphing                                     *
\****************************************************************************************/

/* finds correspondence between two contours */
CvSeq* cvCalcContoursCorrespondence( const CvSeq* contour1,
                                     const CvSeq* contour2,
                                     CvMemStorage* storage);

/* morphs contours using the pre-calculated correspondence:
   alpha=0 ~ contour1, alpha=1 ~ contour2 */
CvSeq* cvMorphContours( const CvSeq* contour1, const CvSeq* contour2,
                        CvSeq* corr, double alpha,
                        CvMemStorage* storage );


/****************************************************************************************\
*                                   Active Contours                                      *
\****************************************************************************************/

#define  CV_VALUE  1
#define  CV_ARRAY  2
/* Updates active contour in order to minimize its cummulative
   (internal and external) energy. */
CVAPI(void)  cvSnakeImage( const IplImage* image, CvPoint* points,
                           int  length, float* alpha,
                           float* beta, float* gamma,
                           int coeff_usage, CvSize  win,
                           CvTermCriteria criteria, int calc_gradient CV_DEFAULT(1));

/****************************************************************************************\
*                                    Texture Descriptors                                 *
\****************************************************************************************/

#define CV_GLCM_OPTIMIZATION_NONE                   -2
#define CV_GLCM_OPTIMIZATION_LUT                    -1
#define CV_GLCM_OPTIMIZATION_HISTOGRAM              0

#define CV_GLCMDESC_OPTIMIZATION_ALLOWDOUBLENEST    10
#define CV_GLCMDESC_OPTIMIZATION_ALLOWTRIPLENEST    11
#define CV_GLCMDESC_OPTIMIZATION_HISTOGRAM          4

#define CV_GLCMDESC_ENTROPY                         0
#define CV_GLCMDESC_ENERGY                          1
#define CV_GLCMDESC_HOMOGENITY                      2
#define CV_GLCMDESC_CONTRAST                        3
#define CV_GLCMDESC_CLUSTERTENDENCY                 4
#define CV_GLCMDESC_CLUSTERSHADE                    5
#define CV_GLCMDESC_CORRELATION                     6
#define CV_GLCMDESC_CORRELATIONINFO1                7
#define CV_GLCMDESC_CORRELATIONINFO2                8
#define CV_GLCMDESC_MAXIMUMPROBABILITY              9

#define CV_GLCM_ALL                                 0
#define CV_GLCM_GLCM                                1
#define CV_GLCM_DESC                                2

typedef struct CvGLCM CvGLCM;

CVAPI(CvGLCM*) cvCreateGLCM( const IplImage* srcImage,
                                int stepMagnitude,
                                const int* stepDirections CV_DEFAULT(0),
                                int numStepDirections CV_DEFAULT(0),
                                int optimizationType CV_DEFAULT(CV_GLCM_OPTIMIZATION_NONE));

CVAPI(void) cvReleaseGLCM( CvGLCM** GLCM, int flag CV_DEFAULT(CV_GLCM_ALL));

CVAPI(void) cvCreateGLCMDescriptors( CvGLCM* destGLCM,
                                        int descriptorOptimizationType
                                        CV_DEFAULT(CV_GLCMDESC_OPTIMIZATION_ALLOWDOUBLENEST));

CVAPI(double) cvGetGLCMDescriptor( CvGLCM* GLCM, int step, int descriptor );

CVAPI(void) cvGetGLCMDescriptorStatistics( CvGLCM* GLCM, int descriptor,
                                              double* average, double* standardDeviation );

CVAPI(IplImage*) cvCreateGLCMImage( CvGLCM* GLCM, int step );

/****************************************************************************************\
*                                  Face eyes&mouth tracking                              *
\****************************************************************************************/


typedef struct CvFaceTracker CvFaceTracker;

#define CV_NUM_FACE_ELEMENTS    3
enum CV_FACE_ELEMENTS
{
    CV_FACE_MOUTH = 0,
    CV_FACE_LEFT_EYE = 1,
    CV_FACE_RIGHT_EYE = 2
};

CVAPI(CvFaceTracker*) cvInitFaceTracker(CvFaceTracker* pFaceTracking, const IplImage* imgGray,
                                                CvRect* pRects, int nRects);
CVAPI(int) cvTrackFace( CvFaceTracker* pFaceTracker, IplImage* imgGray,
                              CvRect* pRects, int nRects,
                              CvPoint* ptRotate, double* dbAngleRotate);
CVAPI(void) cvReleaseFaceTracker(CvFaceTracker** ppFaceTracker);


typedef struct CvFace
{
    CvRect MouthRect;
    CvRect LeftEyeRect;
    CvRect RightEyeRect;
} CvFaceData;

CvSeq * cvFindFace(IplImage * Image,CvMemStorage* storage);
CvSeq * cvPostBoostingFindFace(IplImage * Image,CvMemStorage* storage);


/****************************************************************************************\
*                                         3D Tracker                                     *
\****************************************************************************************/

typedef unsigned char CvBool;

typedef struct Cv3dTracker2dTrackedObject
{
    int id;
    CvPoint2D32f p; // pgruebele: So we do not loose precision, this needs to be float
} Cv3dTracker2dTrackedObject;

CV_INLINE Cv3dTracker2dTrackedObject cv3dTracker2dTrackedObject(int id, CvPoint2D32f p)
{
    Cv3dTracker2dTrackedObject r;
    r.id = id;
    r.p = p;
    return r;
}

typedef struct Cv3dTrackerTrackedObject
{
    int id;
    CvPoint3D32f p;             // location of the tracked object
} Cv3dTrackerTrackedObject;

CV_INLINE Cv3dTrackerTrackedObject cv3dTrackerTrackedObject(int id, CvPoint3D32f p)
{
    Cv3dTrackerTrackedObject r;
    r.id = id;
    r.p = p;
    return r;
}

typedef struct Cv3dTrackerCameraInfo
{
    CvBool valid;
    float mat[4][4];              /* maps camera coordinates to world coordinates */
    CvPoint2D32f principal_point; /* copied from intrinsics so this structure */
                                  /* has all the info we need */
} Cv3dTrackerCameraInfo;

typedef struct Cv3dTrackerCameraIntrinsics
{
    CvPoint2D32f principal_point;
    float focal_length[2];
    float distortion[4];
} Cv3dTrackerCameraIntrinsics;

CVAPI(CvBool) cv3dTrackerCalibrateCameras(int num_cameras,
                     const Cv3dTrackerCameraIntrinsics camera_intrinsics[], /* size is num_cameras */
                     CvSize etalon_size,
                     float square_size,
                     IplImage *samples[],                                   /* size is num_cameras */
                     Cv3dTrackerCameraInfo camera_info[]);                  /* size is num_cameras */

CVAPI(int)  cv3dTrackerLocateObjects(int num_cameras, int num_objects,
                   const Cv3dTrackerCameraInfo camera_info[],        /* size is num_cameras */
                   const Cv3dTracker2dTrackedObject tracking_info[], /* size is num_objects*num_cameras */
                   Cv3dTrackerTrackedObject tracked_objects[]);      /* size is num_objects */
/****************************************************************************************
 tracking_info is a rectangular array; one row per camera, num_objects elements per row.
 The id field of any unused slots must be -1. Ids need not be ordered or consecutive. On
 completion, the return value is the number of objects located; i.e., the number of objects
 visible by more than one camera. The id field of any unused slots in tracked objects is
 set to -1.
****************************************************************************************/


/****************************************************************************************\
*                           Skeletons and Linear-Contour Models                          *
\****************************************************************************************/

typedef enum CvLeeParameters
{
    CV_LEE_INT = 0,
    CV_LEE_FLOAT = 1,
    CV_LEE_DOUBLE = 2,
    CV_LEE_AUTO = -1,
    CV_LEE_ERODE = 0,
    CV_LEE_ZOOM = 1,
    CV_LEE_NON = 2
} CvLeeParameters;

#define CV_NEXT_VORONOISITE2D( SITE ) ((SITE)->edge[0]->site[((SITE)->edge[0]->site[0] == (SITE))])
#define CV_PREV_VORONOISITE2D( SITE ) ((SITE)->edge[1]->site[((SITE)->edge[1]->site[0] == (SITE))])
#define CV_FIRST_VORONOIEDGE2D( SITE ) ((SITE)->edge[0])
#define CV_LAST_VORONOIEDGE2D( SITE ) ((SITE)->edge[1])
#define CV_NEXT_VORONOIEDGE2D( EDGE, SITE ) ((EDGE)->next[(EDGE)->site[0] != (SITE)])
#define CV_PREV_VORONOIEDGE2D( EDGE, SITE ) ((EDGE)->next[2 + ((EDGE)->site[0] != (SITE))])
#define CV_VORONOIEDGE2D_BEGINNODE( EDGE, SITE ) ((EDGE)->node[((EDGE)->site[0] != (SITE))])
#define CV_VORONOIEDGE2D_ENDNODE( EDGE, SITE ) ((EDGE)->node[((EDGE)->site[0] == (SITE))])
#define CV_TWIN_VORONOISITE2D( SITE, EDGE ) ( (EDGE)->site[((EDGE)->site[0] == (SITE))])

#define CV_VORONOISITE2D_FIELDS()    \
    struct CvVoronoiNode2D *node[2]; \
    struct CvVoronoiEdge2D *edge[2];

typedef struct CvVoronoiSite2D
{
    CV_VORONOISITE2D_FIELDS()
    struct CvVoronoiSite2D *next[2];
} CvVoronoiSite2D;

#define CV_VORONOIEDGE2D_FIELDS()    \
    struct CvVoronoiNode2D *node[2]; \
    struct CvVoronoiSite2D *site[2]; \
    struct CvVoronoiEdge2D *next[4];

typedef struct CvVoronoiEdge2D
{
    CV_VORONOIEDGE2D_FIELDS()
} CvVoronoiEdge2D;

#define CV_VORONOINODE2D_FIELDS()       \
    CV_SET_ELEM_FIELDS(CvVoronoiNode2D) \
    CvPoint2D32f pt;                    \
    float radius;

typedef struct CvVoronoiNode2D
{
    CV_VORONOINODE2D_FIELDS()
} CvVoronoiNode2D;

#define CV_VORONOIDIAGRAM2D_FIELDS() \
    CV_GRAPH_FIELDS()                \
    CvSet *sites;

typedef struct CvVoronoiDiagram2D
{
    CV_VORONOIDIAGRAM2D_FIELDS()
} CvVoronoiDiagram2D;

/* Computes Voronoi Diagram for given polygons with holes */
CVAPI(int)  cvVoronoiDiagramFromContour(CvSeq* ContourSeq,
                                           CvVoronoiDiagram2D** VoronoiDiagram,
                                           CvMemStorage* VoronoiStorage,
                                           CvLeeParameters contour_type CV_DEFAULT(CV_LEE_INT),
                                           int contour_orientation CV_DEFAULT(-1),
                                           int attempt_number CV_DEFAULT(10));

/* Computes Voronoi Diagram for domains in given image */
CVAPI(int)  cvVoronoiDiagramFromImage(IplImage* pImage,
                                         CvSeq** ContourSeq,
                                         CvVoronoiDiagram2D** VoronoiDiagram,
                                         CvMemStorage* VoronoiStorage,
                                         CvLeeParameters regularization_method CV_DEFAULT(CV_LEE_NON),
                                         float approx_precision CV_DEFAULT(CV_LEE_AUTO));

/* Deallocates the storage */
CVAPI(void) cvReleaseVoronoiStorage(CvVoronoiDiagram2D* VoronoiDiagram,
                                          CvMemStorage** pVoronoiStorage);

/*********************** Linear-Contour Model ****************************/

struct CvLCMEdge;
struct CvLCMNode;

typedef struct CvLCMEdge
{
    CV_GRAPH_EDGE_FIELDS()
    CvSeq* chain;
    float width;
    int index1;
    int index2;
} CvLCMEdge;

typedef struct CvLCMNode
{
    CV_GRAPH_VERTEX_FIELDS()
    CvContour* contour;
} CvLCMNode;


/* Computes hybrid model from Voronoi Diagram */
CVAPI(CvGraph*) cvLinearContorModelFromVoronoiDiagram(CvVoronoiDiagram2D* VoronoiDiagram,
                                                         float maxWidth);

/* Releases hybrid model storage */
CVAPI(int) cvReleaseLinearContorModelStorage(CvGraph** Graph);


/* two stereo-related functions */

CVAPI(void) cvInitPerspectiveTransform( CvSize size, const CvPoint2D32f vertex[4], double matrix[3][3],
                                              CvArr* rectMap );

/*CVAPI(void) cvInitStereoRectification( CvStereoCamera* params,
                                             CvArr* rectMap1, CvArr* rectMap2,
                                             int do_undistortion );*/

/*************************** View Morphing Functions ************************/

typedef struct CvMatrix3
{
    float m[3][3];
} CvMatrix3;

/* The order of the function corresponds to the order they should appear in
   the view morphing pipeline */

/* Finds ending points of scanlines on left and right images of stereo-pair */
CVAPI(void)  cvMakeScanlines( const CvMatrix3* matrix, CvSize  img_size,
                              int*  scanlines1, int*  scanlines2,
                              int*  lengths1, int*  lengths2,
                              int*  line_count );

/* Grab pixel values from scanlines and stores them sequentially
   (some sort of perspective image transform) */
CVAPI(void)  cvPreWarpImage( int       line_count,
                             IplImage* img,
                             uchar*    dst,
                             int*      dst_nums,
                             int*      scanlines);

/* Approximate each grabbed scanline by a sequence of runs
   (lossy run-length compression) */
CVAPI(void)  cvFindRuns( int    line_count,
                         uchar* prewarp1,
                         uchar* prewarp2,
                         int*   line_lengths1,
                         int*   line_lengths2,
                         int*   runs1,
                         int*   runs2,
                         int*   num_runs1,
                         int*   num_runs2);

/* Compares two sets of compressed scanlines */
CVAPI(void)  cvDynamicCorrespondMulti( int  line_count,
                                       int* first,
                                       int* first_runs,
                                       int* second,
                                       int* second_runs,
                                       int* first_corr,
                                       int* second_corr);

/* Finds scanline ending coordinates for some intermediate "virtual" camera position */
CVAPI(void)  cvMakeAlphaScanlines( int*  scanlines1,
                                   int*  scanlines2,
                                   int*  scanlinesA,
                                   int*  lengths,
                                   int   line_count,
                                   float alpha);

/* Blends data of the left and right image scanlines to get
   pixel values of "virtual" image scanlines */
CVAPI(void)  cvMorphEpilinesMulti( int    line_count,
                                   uchar* first_pix,
                                   int*   first_num,
                                   uchar* second_pix,
                                   int*   second_num,
                                   uchar* dst_pix,
                                   int*   dst_num,
                                   float  alpha,
                                   int*   first,
                                   int*   first_runs,
                                   int*   second,
                                   int*   second_runs,
                                   int*   first_corr,
                                   int*   second_corr);

/* Does reverse warping of the morphing result to make
   it fill the destination image rectangle */
CVAPI(void)  cvPostWarpImage( int       line_count,
                              uchar*    src,
                              int*      src_nums,
                              IplImage* img,
                              int*      scanlines);

/* Deletes Moire (missed pixels that appear due to discretization) */
CVAPI(void)  cvDeleteMoire( IplImage*  img );


typedef struct CvConDensation
{
    int MP;
    int DP;
    float* DynamMatr;       /* Matrix of the linear Dynamics system  */
    float* State;           /* Vector of State                       */
    int SamplesNum;         /* Number of the Samples                 */
    float** flSamples;      /* arr of the Sample Vectors             */
    float** flNewSamples;   /* temporary array of the Sample Vectors */
    float* flConfidence;    /* Confidence for each Sample            */
    float* flCumulative;    /* Cumulative confidence                 */
    float* Temp;            /* Temporary vector                      */
    float* RandomSample;    /* RandomVector to update sample set     */
    struct CvRandState* RandS; /* Array of structures to generate random vectors */
} CvConDensation;

/* Creates ConDensation filter state */
CVAPI(CvConDensation*)  cvCreateConDensation( int dynam_params,
                                             int measure_params,
                                             int sample_count );

/* Releases ConDensation filter state */
CVAPI(void)  cvReleaseConDensation( CvConDensation** condens );

/* Updates ConDensation filter by time (predict future state of the system) */
CVAPI(void)  cvConDensUpdateByTime( CvConDensation* condens);

/* Initializes ConDensation filter samples  */
CVAPI(void)  cvConDensInitSampleSet( CvConDensation* condens, CvMat* lower_bound, CvMat* upper_bound );

CV_INLINE int iplWidth( const IplImage* img )
{
    return !img ? 0 : !img->roi ? img->width : img->roi->width;
}

CV_INLINE int iplHeight( const IplImage* img )
{
    return !img ? 0 : !img->roi ? img->height : img->roi->height;
}

#ifdef __cplusplus
}
#endif

#ifdef __cplusplus

/****************************************************************************************\
*                                   Calibration engine                                   *
\****************************************************************************************/

typedef enum CvCalibEtalonType
{
    CV_CALIB_ETALON_USER = -1,
    CV_CALIB_ETALON_CHESSBOARD = 0,
    CV_CALIB_ETALON_CHECKERBOARD = CV_CALIB_ETALON_CHESSBOARD
}
CvCalibEtalonType;

class CV_EXPORTS CvCalibFilter
{
public:
    /* Constructor & destructor */
    CvCalibFilter();
    virtual ~CvCalibFilter();

    /* Sets etalon type - one for all cameras.
       etalonParams is used in case of pre-defined etalons (such as chessboard).
       Number of elements in etalonParams is determined by etalonType.
       E.g., if etalon type is CV_ETALON_TYPE_CHESSBOARD then:
         etalonParams[0] is number of squares per one side of etalon
         etalonParams[1] is number of squares per another side of etalon
         etalonParams[2] is linear size of squares in the board in arbitrary units.
       pointCount & points are used in case of
       CV_CALIB_ETALON_USER (user-defined) etalon. */
    virtual bool
        SetEtalon( CvCalibEtalonType etalonType, double* etalonParams,
                   int pointCount = 0, CvPoint2D32f* points = 0 );

    /* Retrieves etalon parameters/or and points */
    virtual CvCalibEtalonType
        GetEtalon( int* paramCount = 0, const double** etalonParams = 0,
                   int* pointCount = 0, const CvPoint2D32f** etalonPoints = 0 ) const;

    /* Sets number of cameras calibrated simultaneously. It is equal to 1 initially */
    virtual void SetCameraCount( int cameraCount );

    /* Retrieves number of cameras */
    int GetCameraCount() const { return cameraCount; }

    /* Starts cameras calibration */
    virtual bool SetFrames( int totalFrames );

    /* Stops cameras calibration */
    virtual void Stop( bool calibrate = false );

    /* Retrieves number of cameras */
    bool IsCalibrated() const { return isCalibrated; }

    /* Feeds another serie of snapshots (one per each camera) to filter.
       Etalon points on these images are found automatically.
       If the function can't locate points, it returns false */
    virtual bool FindEtalon( IplImage** imgs );

    /* The same but takes matrices */
    virtual bool FindEtalon( CvMat** imgs );

    /* Lower-level function for feeding filter with already found etalon points.
       Array of point arrays for each camera is passed. */
    virtual bool Push( const CvPoint2D32f** points = 0 );

    /* Returns total number of accepted frames and, optionally,
       total number of frames to collect */
    virtual int GetFrameCount( int* framesTotal = 0 ) const;

    /* Retrieves camera parameters for specified camera.
       If camera is not calibrated the function returns 0 */
    virtual const CvCamera* GetCameraParams( int idx = 0 ) const;

    virtual const CvStereoCamera* GetStereoParams() const;

    /* Sets camera parameters for all cameras */
    virtual bool SetCameraParams( CvCamera* params );

    /* Saves all camera parameters to file */
    virtual bool SaveCameraParams( const char* filename );

    /* Loads all camera parameters from file */
    virtual bool LoadCameraParams( const char* filename );

    /* Undistorts images using camera parameters. Some of src pointers can be NULL. */
    virtual bool Undistort( IplImage** src, IplImage** dst );

    /* Undistorts images using camera parameters. Some of src pointers can be NULL. */
    virtual bool Undistort( CvMat** src, CvMat** dst );

    /* Returns array of etalon points detected/partally detected
       on the latest frame for idx-th camera */
    virtual bool GetLatestPoints( int idx, CvPoint2D32f** pts,
                                                  int* count, bool* found );

    /* Draw the latest detected/partially detected etalon */
    virtual void DrawPoints( IplImage** dst );

    /* Draw the latest detected/partially detected etalon */
    virtual void DrawPoints( CvMat** dst );

    virtual bool Rectify( IplImage** srcarr, IplImage** dstarr );
    virtual bool Rectify( CvMat** srcarr, CvMat** dstarr );

protected:

    enum { MAX_CAMERAS = 3 };

    /* etalon data */
    CvCalibEtalonType  etalonType;
    int     etalonParamCount;
    double* etalonParams;
    int     etalonPointCount;
    CvPoint2D32f* etalonPoints;
    CvSize  imgSize;
    CvMat*  grayImg;
    CvMat*  tempImg;
    CvMemStorage* storage;

    /* camera data */
    int     cameraCount;
    CvCamera cameraParams[MAX_CAMERAS];
    CvStereoCamera stereo;
    CvPoint2D32f* points[MAX_CAMERAS];
    CvMat*  undistMap[MAX_CAMERAS][2];
    CvMat*  undistImg;
    int     latestCounts[MAX_CAMERAS];
    CvPoint2D32f* latestPoints[MAX_CAMERAS];
    CvMat*  rectMap[MAX_CAMERAS][2];

    /* Added by Valery */
    //CvStereoCamera stereoParams;

    int     maxPoints;
    int     framesTotal;
    int     framesAccepted;
    bool    isCalibrated;
};

#include <iosfwd>
#include <limits>

class CV_EXPORTS CvImage
{
public:
    CvImage() : image(0), refcount(0) {}
    CvImage( CvSize _size, int _depth, int _channels )
    {
        image = cvCreateImage( _size, _depth, _channels );
        refcount = image ? new int(1) : 0;
    }

    CvImage( IplImage* img ) : image(img)
    {
        refcount = image ? new int(1) : 0;
    }

    CvImage( const CvImage& img ) : image(img.image), refcount(img.refcount)
    {
        if( refcount ) ++(*refcount);
    }

    CvImage( const char* filename, const char* imgname=0, int color=-1 ) : image(0), refcount(0)
    { load( filename, imgname, color ); }

    CvImage( CvFileStorage* fs, const char* mapname, const char* imgname ) : image(0), refcount(0)
    { read( fs, mapname, imgname ); }

    CvImage( CvFileStorage* fs, const char* seqname, int idx ) : image(0), refcount(0)
    { read( fs, seqname, idx ); }

    ~CvImage()
    {
        if( refcount && !(--*refcount) )
        {
            cvReleaseImage( &image );
            delete refcount;
        }
    }

    CvImage clone() { return CvImage(image ? cvCloneImage(image) : 0); }

    void create( CvSize _size, int _depth, int _channels )
    {
        if( !image || !refcount ||
           image->width != _size.width || image->height != _size.height ||
           image->depth != _depth || image->nChannels != _channels )
            attach( cvCreateImage( _size, _depth, _channels ));
    }

    void release() { detach(); }
    void clear() { detach(); }

    void attach( IplImage* img, bool use_refcount=true )
    {
        if( refcount && --*refcount == 0 )
        {
            cvReleaseImage( &image );
            delete refcount;
        }
        image = img;
        refcount = use_refcount && image ? new int(1) : 0;
    }

    void detach()
    {
        if( refcount && --*refcount == 0 )
        {
            cvReleaseImage( &image );
            delete refcount;
        }
        image = 0;
        refcount = 0;
    }

    bool load( const char* filename, const char* imgname=0, int color=-1 );
    bool read( CvFileStorage* fs, const char* mapname, const char* imgname );
    bool read( CvFileStorage* fs, const char* seqname, int idx );
    void save( const char* filename, const char* imgname, const int* params=0 );
    void write( CvFileStorage* fs, const char* imgname );

    void show( const char* window_name );
    bool is_valid() { return image != 0; }

    int width() const { return image ? image->width : 0; }
    int height() const { return image ? image->height : 0; }

    CvSize size() const { return image ? cvSize(image->width, image->height) : cvSize(0,0); }

    CvSize roi_size() const
    {
        return !image ? cvSize(0,0) :
        !image->roi ? cvSize(image->width,image->height) :
        cvSize(image->roi->width, image->roi->height);
    }

    CvRect roi() const
    {
        return !image ? cvRect(0,0,0,0) :
        !image->roi ? cvRect(0,0,image->width,image->height) :
        cvRect(image->roi->xOffset,image->roi->yOffset,
               image->roi->width,image->roi->height);
    }

    int coi() const { return !image || !image->roi ? 0 : image->roi->coi; }

    void set_roi(CvRect _roi) { cvSetImageROI(image,_roi); }
    void reset_roi() { cvResetImageROI(image); }
    void set_coi(int _coi) { cvSetImageCOI(image,_coi); }
    int depth() const { return image ? image->depth : 0; }
    int channels() const { return image ? image->nChannels : 0; }
    int pix_size() const { return image ? ((image->depth & 255)>>3)*image->nChannels : 0; }

    uchar* data() { return image ? (uchar*)image->imageData : 0; }
    const uchar* data() const { return image ? (const uchar*)image->imageData : 0; }
    int step() const { return image ? image->widthStep : 0; }
    int origin() const { return image ? image->origin : 0; }

    uchar* roi_row(int y)
    {
        assert(0<=y);
        assert(!image ?
               1 : image->roi ?
               y<image->roi->height : y<image->height);

        return !image ? 0 :
        !image->roi ?
        (uchar*)(image->imageData + y*image->widthStep) :
        (uchar*)(image->imageData + (y+image->roi->yOffset)*image->widthStep +
                 image->roi->xOffset*((image->depth & 255)>>3)*image->nChannels);
    }

    const uchar* roi_row(int y) const
    {
        assert(0<=y);
        assert(!image ?
               1 : image->roi ?
               y<image->roi->height : y<image->height);

        return !image ? 0 :
        !image->roi ?
        (const uchar*)(image->imageData + y*image->widthStep) :
        (const uchar*)(image->imageData + (y+image->roi->yOffset)*image->widthStep +
                       image->roi->xOffset*((image->depth & 255)>>3)*image->nChannels);
    }

    operator const IplImage* () const { return image; }
    operator IplImage* () { return image; }

    CvImage& operator = (const CvImage& img)
    {
        if( img.refcount )
            ++*img.refcount;
        if( refcount && !(--*refcount) )
            cvReleaseImage( &image );
        image=img.image;
        refcount=img.refcount;
        return *this;
    }

protected:
    IplImage* image;
    int* refcount;
};


class CV_EXPORTS CvMatrix
{
public:
    CvMatrix() : matrix(0) {}
    CvMatrix( int _rows, int _cols, int _type )
    { matrix = cvCreateMat( _rows, _cols, _type ); }

    CvMatrix( int _rows, int _cols, int _type, CvMat* hdr,
             void* _data=0, int _step=CV_AUTOSTEP )
    { matrix = cvInitMatHeader( hdr, _rows, _cols, _type, _data, _step ); }

    CvMatrix( int rows, int cols, int type, CvMemStorage* storage, bool alloc_data=true );

    CvMatrix( int _rows, int _cols, int _type, void* _data, int _step=CV_AUTOSTEP )
    { matrix = cvCreateMatHeader( _rows, _cols, _type );
        cvSetData( matrix, _data, _step ); }

    CvMatrix( CvMat* m )
    { matrix = m; }

    CvMatrix( const CvMatrix& m )
    {
        matrix = m.matrix;
        addref();
    }

    CvMatrix( const char* filename, const char* matname=0, int color=-1 ) : matrix(0)
    {  load( filename, matname, color ); }

    CvMatrix( CvFileStorage* fs, const char* mapname, const char* matname ) : matrix(0)
    {  read( fs, mapname, matname ); }

    CvMatrix( CvFileStorage* fs, const char* seqname, int idx ) : matrix(0)
    {  read( fs, seqname, idx ); }

    ~CvMatrix()
    {
        release();
    }

    CvMatrix clone() { return CvMatrix(matrix ? cvCloneMat(matrix) : 0); }

    void set( CvMat* m, bool add_ref )
    {
        release();
        matrix = m;
        if( add_ref )
            addref();
    }

    void create( int _rows, int _cols, int _type )
    {
        if( !matrix || !matrix->refcount ||
           matrix->rows != _rows || matrix->cols != _cols ||
           CV_MAT_TYPE(matrix->type) != _type )
            set( cvCreateMat( _rows, _cols, _type ), false );
    }

    void addref() const
    {
        if( matrix )
        {
            if( matrix->hdr_refcount )
                ++matrix->hdr_refcount;
            else if( matrix->refcount )
                ++*matrix->refcount;
        }
    }

    void release()
    {
        if( matrix )
        {
            if( matrix->hdr_refcount )
            {
                if( --matrix->hdr_refcount == 0 )
                    cvReleaseMat( &matrix );
            }
            else if( matrix->refcount )
            {
                if( --*matrix->refcount == 0 )
                    cvFree( &matrix->refcount );
            }
            matrix = 0;
        }
    }

    void clear()
    {
        release();
    }

    bool load( const char* filename, const char* matname=0, int color=-1 );
    bool read( CvFileStorage* fs, const char* mapname, const char* matname );
    bool read( CvFileStorage* fs, const char* seqname, int idx );
    void save( const char* filename, const char* matname, const int* params=0 );
    void write( CvFileStorage* fs, const char* matname );

    void show( const char* window_name );

    bool is_valid() { return matrix != 0; }

    int rows() const { return matrix ? matrix->rows : 0; }
    int cols() const { return matrix ? matrix->cols : 0; }

    CvSize size() const
    {
        return !matrix ? cvSize(0,0) : cvSize(matrix->rows,matrix->cols);
    }

    int type() const { return matrix ? CV_MAT_TYPE(matrix->type) : 0; }
    int depth() const { return matrix ? CV_MAT_DEPTH(matrix->type) : 0; }
    int channels() const { return matrix ? CV_MAT_CN(matrix->type) : 0; }
    int pix_size() const { return matrix ? CV_ELEM_SIZE(matrix->type) : 0; }

    uchar* data() { return matrix ? matrix->data.ptr : 0; }
    const uchar* data() const { return matrix ? matrix->data.ptr : 0; }
    int step() const { return matrix ? matrix->step : 0; }

    void set_data( void* _data, int _step=CV_AUTOSTEP )
    { cvSetData( matrix, _data, _step ); }

    uchar* row(int i) { return !matrix ? 0 : matrix->data.ptr + i*matrix->step; }
    const uchar* row(int i) const
    { return !matrix ? 0 : matrix->data.ptr + i*matrix->step; }

    operator const CvMat* () const { return matrix; }
    operator CvMat* () { return matrix; }

    CvMatrix& operator = (const CvMatrix& _m)
    {
        _m.addref();
        release();
        matrix = _m.matrix;
        return *this;
    }

protected:
    CvMat* matrix;
};

/****************************************************************************************\
 *                                       CamShiftTracker                                  *
 \****************************************************************************************/

class CV_EXPORTS CvCamShiftTracker
{
public:

    CvCamShiftTracker();
    virtual ~CvCamShiftTracker();

    /**** Characteristics of the object that are calculated by track_object method *****/
    float   get_orientation() const // orientation of the object in degrees
    { return m_box.angle; }
    float   get_length() const // the larger linear size of the object
    { return m_box.size.height; }
    float   get_width() const // the smaller linear size of the object
    { return m_box.size.width; }
    CvPoint2D32f get_center() const // center of the object
    { return m_box.center; }
    CvRect get_window() const // bounding rectangle for the object
    { return m_comp.rect; }

    /*********************** Tracking parameters ************************/
    int     get_threshold() const // thresholding value that applied to back project
    { return m_threshold; }

    int     get_hist_dims( int* dims = 0 ) const // returns number of histogram dimensions and sets
    { return m_hist ? cvGetDims( m_hist->bins, dims ) : 0; }

    int     get_min_ch_val( int channel ) const // get the minimum allowed value of the specified channel
    { return m_min_ch_val[channel]; }

    int     get_max_ch_val( int channel ) const // get the maximum allowed value of the specified channel
    { return m_max_ch_val[channel]; }

    // set initial object rectangle (must be called before initial calculation of the histogram)
    bool    set_window( CvRect window)
    { m_comp.rect = window; return true; }

    bool    set_threshold( int threshold ) // threshold applied to the histogram bins
    { m_threshold = threshold; return true; }

    bool    set_hist_bin_range( int dim, int min_val, int max_val );

    bool    set_hist_dims( int c_dims, int* dims );// set the histogram parameters

    bool    set_min_ch_val( int channel, int val ) // set the minimum allowed value of the specified channel
    { m_min_ch_val[channel] = val; return true; }
    bool    set_max_ch_val( int channel, int val ) // set the maximum allowed value of the specified channel
    { m_max_ch_val[channel] = val; return true; }

    /************************ The processing methods *********************************/
    // update object position
    virtual bool  track_object( const IplImage* cur_frame );

    // update object histogram
    virtual bool  update_histogram( const IplImage* cur_frame );

    // reset histogram
    virtual void  reset_histogram();

    /************************ Retrieving internal data *******************************/
    // get back project image
    virtual IplImage* get_back_project()
    { return m_back_project; }

    float query( int* bin ) const
    { return m_hist ? (float)cvGetRealND(m_hist->bins, bin) : 0.f; }

protected:

    // internal method for color conversion: fills m_color_planes group
    virtual void color_transform( const IplImage* img );

    CvHistogram* m_hist;

    CvBox2D    m_box;
    CvConnectedComp m_comp;

    float      m_hist_ranges_data[CV_MAX_DIM][2];
    float*     m_hist_ranges[CV_MAX_DIM];

    int        m_min_ch_val[CV_MAX_DIM];
    int        m_max_ch_val[CV_MAX_DIM];
    int        m_threshold;

    IplImage*  m_color_planes[CV_MAX_DIM];
    IplImage*  m_back_project;
    IplImage*  m_temp;
    IplImage*  m_mask;
};

/****************************************************************************************\
*                              Expectation - Maximization                                *
\****************************************************************************************/
struct CV_EXPORTS_W_MAP CvEMParams
{
    CvEMParams();
    CvEMParams( int nclusters, int cov_mat_type=cv::EM::COV_MAT_DIAGONAL,
                int start_step=cv::EM::START_AUTO_STEP,
                CvTermCriteria term_crit=cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 100, FLT_EPSILON),
                const CvMat* probs=0, const CvMat* weights=0, const CvMat* means=0, const CvMat** covs=0 );

    CV_PROP_RW int nclusters;
    CV_PROP_RW int cov_mat_type;
    CV_PROP_RW int start_step;
    const CvMat* probs;
    const CvMat* weights;
    const CvMat* means;
    const CvMat** covs;
    CV_PROP_RW CvTermCriteria term_crit;
};


class CV_EXPORTS_W CvEM : public CvStatModel
{
public:
    // Type of covariation matrices
    enum { COV_MAT_SPHERICAL=cv::EM::COV_MAT_SPHERICAL,
           COV_MAT_DIAGONAL =cv::EM::COV_MAT_DIAGONAL,
           COV_MAT_GENERIC  =cv::EM::COV_MAT_GENERIC };

    // The initial step
    enum { START_E_STEP=cv::EM::START_E_STEP,
           START_M_STEP=cv::EM::START_M_STEP,
           START_AUTO_STEP=cv::EM::START_AUTO_STEP };

    CV_WRAP CvEM();
    CvEM( const CvMat* samples, const CvMat* sampleIdx=0,
          CvEMParams params=CvEMParams(), CvMat* labels=0 );

    virtual ~CvEM();

    virtual bool train( const CvMat* samples, const CvMat* sampleIdx=0,
                        CvEMParams params=CvEMParams(), CvMat* labels=0 );

    virtual float predict( const CvMat* sample, CV_OUT CvMat* probs ) const;

    CV_WRAP CvEM( const cv::Mat& samples, const cv::Mat& sampleIdx=cv::Mat(),
                  CvEMParams params=CvEMParams() );

    CV_WRAP virtual bool train( const cv::Mat& samples,
                                const cv::Mat& sampleIdx=cv::Mat(),
                                CvEMParams params=CvEMParams(),
                                CV_OUT cv::Mat* labels=0 );

    CV_WRAP virtual float predict( const cv::Mat& sample, CV_OUT cv::Mat* probs=0 ) const;
    CV_WRAP virtual double calcLikelihood( const cv::Mat &sample ) const;

    CV_WRAP int getNClusters() const;
    CV_WRAP cv::Mat getMeans() const;
    CV_WRAP void getCovs(CV_OUT std::vector<cv::Mat>& covs) const;
    CV_WRAP cv::Mat getWeights() const;
    CV_WRAP cv::Mat getProbs() const;

    CV_WRAP inline double getLikelihood() const { return emObj.isTrained() ? logLikelihood : DBL_MAX; }

    CV_WRAP virtual void clear();

    int get_nclusters() const;
    const CvMat* get_means() const;
    const CvMat** get_covs() const;
    const CvMat* get_weights() const;
    const CvMat* get_probs() const;

    inline double get_log_likelihood() const { return getLikelihood(); }

    virtual void read( CvFileStorage* fs, CvFileNode* node );
    virtual void write( CvFileStorage* fs, const char* name ) const;

protected:
    void set_mat_hdrs();

    cv::EM emObj;
    cv::Mat probs;
    double logLikelihood;

    CvMat meansHdr;
    std::vector<CvMat> covsHdrs;
    std::vector<CvMat*> covsPtrs;
    CvMat weightsHdr;
    CvMat probsHdr;
};

namespace cv
{

typedef CvEMParams EMParams;
typedef CvEM ExpectationMaximization;

/*!
 The Patch Generator class
 */
class CV_EXPORTS PatchGenerator
{
public:
    PatchGenerator();
    PatchGenerator(double _backgroundMin, double _backgroundMax,
                   double _noiseRange, bool _randomBlur=true,
                   double _lambdaMin=0.6, double _lambdaMax=1.5,
                   double _thetaMin=-CV_PI, double _thetaMax=CV_PI,
                   double _phiMin=-CV_PI, double _phiMax=CV_PI );
    void operator()(const Mat& image, Point2f pt, Mat& patch, Size patchSize, RNG& rng) const;
    void operator()(const Mat& image, const Mat& transform, Mat& patch,
                    Size patchSize, RNG& rng) const;
    void warpWholeImage(const Mat& image, Mat& matT, Mat& buf,
                        CV_OUT Mat& warped, int border, RNG& rng) const;
    void generateRandomTransform(Point2f srcCenter, Point2f dstCenter,
                                 CV_OUT Mat& transform, RNG& rng,
                                 bool inverse=false) const;
    void setAffineParam(double lambda, double theta, double phi);

    double backgroundMin, backgroundMax;
    double noiseRange;
    bool randomBlur;
    double lambdaMin, lambdaMax;
    double thetaMin, thetaMax;
    double phiMin, phiMax;
};


class CV_EXPORTS LDetector
{
public:
    LDetector();
    LDetector(int _radius, int _threshold, int _nOctaves,
              int _nViews, double _baseFeatureSize, double _clusteringDistance);
    void operator()(const Mat& image,
                    CV_OUT vector<KeyPoint>& keypoints,
                    int maxCount=0, bool scaleCoords=true) const;
    void operator()(const vector<Mat>& pyr,
                    CV_OUT vector<KeyPoint>& keypoints,
                    int maxCount=0, bool scaleCoords=true) const;
    void getMostStable2D(const Mat& image, CV_OUT vector<KeyPoint>& keypoints,
                         int maxCount, const PatchGenerator& patchGenerator) const;
    void setVerbose(bool verbose);

    void read(const FileNode& node);
    void write(FileStorage& fs, const String& name=String()) const;

    int radius;
    int threshold;
    int nOctaves;
    int nViews;
    bool verbose;

    double baseFeatureSize;
    double clusteringDistance;
};

typedef LDetector YAPE;

class CV_EXPORTS FernClassifier
{
public:
    FernClassifier();
    FernClassifier(const FileNode& node);
    FernClassifier(const vector<vector<Point2f> >& points,
                   const vector<Mat>& refimgs,
                   const vector<vector<int> >& labels=vector<vector<int> >(),
                   int _nclasses=0, int _patchSize=PATCH_SIZE,
                   int _signatureSize=DEFAULT_SIGNATURE_SIZE,
                   int _nstructs=DEFAULT_STRUCTS,
                   int _structSize=DEFAULT_STRUCT_SIZE,
                   int _nviews=DEFAULT_VIEWS,
                   int _compressionMethod=COMPRESSION_NONE,
                   const PatchGenerator& patchGenerator=PatchGenerator());
    virtual ~FernClassifier();
    virtual void read(const FileNode& n);
    virtual void write(FileStorage& fs, const String& name=String()) const;
    virtual void trainFromSingleView(const Mat& image,
                                     const vector<KeyPoint>& keypoints,
                                     int _patchSize=PATCH_SIZE,
                                     int _signatureSize=DEFAULT_SIGNATURE_SIZE,
                                     int _nstructs=DEFAULT_STRUCTS,
                                     int _structSize=DEFAULT_STRUCT_SIZE,
                                     int _nviews=DEFAULT_VIEWS,
                                     int _compressionMethod=COMPRESSION_NONE,
                                     const PatchGenerator& patchGenerator=PatchGenerator());
    virtual void train(const vector<vector<Point2f> >& points,
                       const vector<Mat>& refimgs,
                       const vector<vector<int> >& labels=vector<vector<int> >(),
                       int _nclasses=0, int _patchSize=PATCH_SIZE,
                       int _signatureSize=DEFAULT_SIGNATURE_SIZE,
                       int _nstructs=DEFAULT_STRUCTS,
                       int _structSize=DEFAULT_STRUCT_SIZE,
                       int _nviews=DEFAULT_VIEWS,
                       int _compressionMethod=COMPRESSION_NONE,
                       const PatchGenerator& patchGenerator=PatchGenerator());
    virtual int operator()(const Mat& img, Point2f kpt, vector<float>& signature) const;
    virtual int operator()(const Mat& patch, vector<float>& signature) const;
    virtual void clear();
    virtual bool empty() const;
    void setVerbose(bool verbose);

    int getClassCount() const;
    int getStructCount() const;
    int getStructSize() const;
    int getSignatureSize() const;
    int getCompressionMethod() const;
    Size getPatchSize() const;

    struct Feature
    {
        uchar x1, y1, x2, y2;
        Feature() : x1(0), y1(0), x2(0), y2(0) {}
        Feature(int _x1, int _y1, int _x2, int _y2)
        : x1((uchar)_x1), y1((uchar)_y1), x2((uchar)_x2), y2((uchar)_y2)
        {}
        template<typename _Tp> bool operator ()(const Mat_<_Tp>& patch) const
        { return patch(y1,x1) > patch(y2, x2); }
    };

    enum
    {
        PATCH_SIZE = 31,
        DEFAULT_STRUCTS = 50,
        DEFAULT_STRUCT_SIZE = 9,
        DEFAULT_VIEWS = 5000,
        DEFAULT_SIGNATURE_SIZE = 176,
        COMPRESSION_NONE = 0,
        COMPRESSION_RANDOM_PROJ = 1,
        COMPRESSION_PCA = 2,
        DEFAULT_COMPRESSION_METHOD = COMPRESSION_NONE
    };

protected:
    virtual void prepare(int _nclasses, int _patchSize, int _signatureSize,
                         int _nstructs, int _structSize,
                         int _nviews, int _compressionMethod);
    virtual void finalize(RNG& rng);
    virtual int getLeaf(int fidx, const Mat& patch) const;

    bool verbose;
    int nstructs;
    int structSize;
    int nclasses;
    int signatureSize;
    int compressionMethod;
    int leavesPerStruct;
    Size patchSize;
    vector<Feature> features;
    vector<int> classCounters;
    vector<float> posteriors;
};


/****************************************************************************************\
 *                                 Calonder Classifier                                    *
 \****************************************************************************************/

struct RTreeNode;

struct CV_EXPORTS BaseKeypoint
{
    int x;
    int y;
    IplImage* image;

    BaseKeypoint()
    : x(0), y(0), image(NULL)
    {}

    BaseKeypoint(int _x, int _y, IplImage* _image)
    : x(_x), y(_y), image(_image)
    {}
};

class CV_EXPORTS RandomizedTree
{
public:
    friend class RTreeClassifier;

    static const uchar PATCH_SIZE = 32;
    static const int DEFAULT_DEPTH = 9;
    static const int DEFAULT_VIEWS = 5000;
    static const size_t DEFAULT_REDUCED_NUM_DIM = 176;
    static float GET_LOWER_QUANT_PERC() { return .03f; }
    static float GET_UPPER_QUANT_PERC() { return .92f; }

    RandomizedTree();
    ~RandomizedTree();

    void train(vector<BaseKeypoint> const& base_set, RNG &rng,
               int depth, int views, size_t reduced_num_dim, int num_quant_bits);
    void train(vector<BaseKeypoint> const& base_set, RNG &rng,
               PatchGenerator &make_patch, int depth, int views, size_t reduced_num_dim,
               int num_quant_bits);

    // following two funcs are EXPERIMENTAL (do not use unless you know exactly what you do)
    static void quantizeVector(float *vec, int dim, int N, float bnds[2], int clamp_mode=0);
    static void quantizeVector(float *src, int dim, int N, float bnds[2], uchar *dst);

    // patch_data must be a 32x32 array (no row padding)
    float* getPosterior(uchar* patch_data);
    const float* getPosterior(uchar* patch_data) const;
    uchar* getPosterior2(uchar* patch_data);
    const uchar* getPosterior2(uchar* patch_data) const;

    void read(const char* file_name, int num_quant_bits);
    void read(std::istream &is, int num_quant_bits);
    void write(const char* file_name) const;
    void write(std::ostream &os) const;

    int classes() { return classes_; }
    int depth() { return depth_; }

    //void setKeepFloatPosteriors(bool b) { keep_float_posteriors_ = b; }
    void discardFloatPosteriors() { freePosteriors(1); }

    inline void applyQuantization(int num_quant_bits) { makePosteriors2(num_quant_bits); }

    // debug
    void savePosteriors(std::string url, bool append=false);
    void savePosteriors2(std::string url, bool append=false);

private:
    int classes_;
    int depth_;
    int num_leaves_;
    vector<RTreeNode> nodes_;
    float **posteriors_;        // 16-bytes aligned posteriors
    uchar **posteriors2_;     // 16-bytes aligned posteriors
    vector<int> leaf_counts_;

    void createNodes(int num_nodes, RNG &rng);
    void allocPosteriorsAligned(int num_leaves, int num_classes);
    void freePosteriors(int which);    // which: 1=posteriors_, 2=posteriors2_, 3=both
    void init(int classes, int depth, RNG &rng);
    void addExample(int class_id, uchar* patch_data);
    void finalize(size_t reduced_num_dim, int num_quant_bits);
    int getIndex(uchar* patch_data) const;
    inline float* getPosteriorByIndex(int index);
    inline const float* getPosteriorByIndex(int index) const;
    inline uchar* getPosteriorByIndex2(int index);
    inline const uchar* getPosteriorByIndex2(int index) const;
    //void makeRandomMeasMatrix(float *cs_phi, PHI_DISTR_TYPE dt, size_t reduced_num_dim);
    void convertPosteriorsToChar();
    void makePosteriors2(int num_quant_bits);
    void compressLeaves(size_t reduced_num_dim);
    void estimateQuantPercForPosteriors(float perc[2]);
};


inline uchar* getData(IplImage* image)
{
    return reinterpret_cast<uchar*>(image->imageData);
}

inline float* RandomizedTree::getPosteriorByIndex(int index)
{
    return const_cast<float*>(const_cast<const RandomizedTree*>(this)->getPosteriorByIndex(index));
}

inline const float* RandomizedTree::getPosteriorByIndex(int index) const
{
    return posteriors_[index];
}

inline uchar* RandomizedTree::getPosteriorByIndex2(int index)
{
    return const_cast<uchar*>(const_cast<const RandomizedTree*>(this)->getPosteriorByIndex2(index));
}

inline const uchar* RandomizedTree::getPosteriorByIndex2(int index) const
{
    return posteriors2_[index];
}

struct CV_EXPORTS RTreeNode
{
    short offset1, offset2;

    RTreeNode() {}
    RTreeNode(uchar x1, uchar y1, uchar x2, uchar y2)
    : offset1(y1*RandomizedTree::PATCH_SIZE + x1),
    offset2(y2*RandomizedTree::PATCH_SIZE + x2)
    {}

    //! Left child on 0, right child on 1
    inline bool operator() (uchar* patch_data) const
    {
        return patch_data[offset1] > patch_data[offset2];
    }
};

class CV_EXPORTS RTreeClassifier
{
public:
    static const int DEFAULT_TREES = 48;
    static const size_t DEFAULT_NUM_QUANT_BITS = 4;

    RTreeClassifier();
    void train(vector<BaseKeypoint> const& base_set,
               RNG &rng,
               int num_trees = RTreeClassifier::DEFAULT_TREES,
               int depth = RandomizedTree::DEFAULT_DEPTH,
               int views = RandomizedTree::DEFAULT_VIEWS,
               size_t reduced_num_dim = RandomizedTree::DEFAULT_REDUCED_NUM_DIM,
               int num_quant_bits = DEFAULT_NUM_QUANT_BITS);
    void train(vector<BaseKeypoint> const& base_set,
               RNG &rng,
               PatchGenerator &make_patch,
               int num_trees = RTreeClassifier::DEFAULT_TREES,
               int depth = RandomizedTree::DEFAULT_DEPTH,
               int views = RandomizedTree::DEFAULT_VIEWS,
               size_t reduced_num_dim = RandomizedTree::DEFAULT_REDUCED_NUM_DIM,
               int num_quant_bits = DEFAULT_NUM_QUANT_BITS);

    // sig must point to a memory block of at least classes()*sizeof(float|uchar) bytes
    void getSignature(IplImage *patch, uchar *sig) const;
    void getSignature(IplImage *patch, float *sig) const;
    void getSparseSignature(IplImage *patch, float *sig, float thresh) const;
    // TODO: deprecated in favor of getSignature overload, remove
    void getFloatSignature(IplImage *patch, float *sig) const { getSignature(patch, sig); }

    static int countNonZeroElements(float *vec, int n, double tol=1e-10);
    static inline void safeSignatureAlloc(uchar **sig, int num_sig=1, int sig_len=176);
    static inline uchar* safeSignatureAlloc(int num_sig=1, int sig_len=176);

    inline int classes() const { return classes_; }
    inline int original_num_classes() const { return original_num_classes_; }

    void setQuantization(int num_quant_bits);
    void discardFloatPosteriors();

    void read(const char* file_name);
    void read(std::istream &is);
    void write(const char* file_name) const;
    void write(std::ostream &os) const;

    // experimental and debug
    void saveAllFloatPosteriors(std::string file_url);
    void saveAllBytePosteriors(std::string file_url);
    void setFloatPosteriorsFromTextfile_176(std::string url);
    float countZeroElements();

    vector<RandomizedTree> trees_;

private:
    int classes_;
    int num_quant_bits_;
    mutable uchar **posteriors_;
    mutable unsigned short *ptemp_;
    int original_num_classes_;
    bool keep_floats_;
};

/****************************************************************************************\
*                                     One-Way Descriptor                                 *
\****************************************************************************************/

// CvAffinePose: defines a parameterized affine transformation of an image patch.
// An image patch is rotated on angle phi (in degrees), then scaled lambda1 times
// along horizontal and lambda2 times along vertical direction, and then rotated again
// on angle (theta - phi).
class CV_EXPORTS CvAffinePose
{
public:
    float phi;
    float theta;
    float lambda1;
    float lambda2;
};

class CV_EXPORTS OneWayDescriptor
{
public:
    OneWayDescriptor();
    ~OneWayDescriptor();

    // allocates memory for given descriptor parameters
    void Allocate(int pose_count, CvSize size, int nChannels);

    // GenerateSamples: generates affine transformed patches with averaging them over small transformation variations.
    // If external poses and transforms were specified, uses them instead of generating random ones
    // - pose_count: the number of poses to be generated
    // - frontal: the input patch (can be a roi in a larger image)
    // - norm: if nonzero, normalizes the output patch so that the sum of pixel intensities is 1
    void GenerateSamples(int pose_count, IplImage* frontal, int norm = 0);

    // GenerateSamplesFast: generates affine transformed patches with averaging them over small transformation variations.
    // Uses precalculated transformed pca components.
    // - frontal: the input patch (can be a roi in a larger image)
    // - pca_hr_avg: pca average vector
    // - pca_hr_eigenvectors: pca eigenvectors
    // - pca_descriptors: an array of precomputed descriptors of pca components containing their affine transformations
    //   pca_descriptors[0] corresponds to the average, pca_descriptors[1]-pca_descriptors[pca_dim] correspond to eigenvectors
    void GenerateSamplesFast(IplImage* frontal, CvMat* pca_hr_avg,
                             CvMat* pca_hr_eigenvectors, OneWayDescriptor* pca_descriptors);

    // sets the poses and corresponding transforms
    void SetTransforms(CvAffinePose* poses, CvMat** transforms);

    // Initialize: builds a descriptor.
    // - pose_count: the number of poses to build. If poses were set externally, uses them rather than generating random ones
    // - frontal: input patch. Can be a roi in a larger image
    // - feature_name: the feature name to be associated with the descriptor
    // - norm: if 1, the affine transformed patches are normalized so that their sum is 1
    void Initialize(int pose_count, IplImage* frontal, const char* feature_name = 0, int norm = 0);

    // InitializeFast: builds a descriptor using precomputed descriptors of pca components
    // - pose_count: the number of poses to build
    // - frontal: input patch. Can be a roi in a larger image
    // - feature_name: the feature name to be associated with the descriptor
    // - pca_hr_avg: average vector for PCA
    // - pca_hr_eigenvectors: PCA eigenvectors (one vector per row)
    // - pca_descriptors: precomputed descriptors of PCA components, the first descriptor for the average vector
    // followed by the descriptors for eigenvectors
    void InitializeFast(int pose_count, IplImage* frontal, const char* feature_name,
                        CvMat* pca_hr_avg, CvMat* pca_hr_eigenvectors, OneWayDescriptor* pca_descriptors);

    // ProjectPCASample: unwarps an image patch into a vector and projects it into PCA space
    // - patch: input image patch
    // - avg: PCA average vector
    // - eigenvectors: PCA eigenvectors, one per row
    // - pca_coeffs: output PCA coefficients
    void ProjectPCASample(IplImage* patch, CvMat* avg, CvMat* eigenvectors, CvMat* pca_coeffs) const;

    // InitializePCACoeffs: projects all warped patches into PCA space
    // - avg: PCA average vector
    // - eigenvectors: PCA eigenvectors, one per row
    void InitializePCACoeffs(CvMat* avg, CvMat* eigenvectors);

    // EstimatePose: finds the closest match between an input patch and a set of patches with different poses
    // - patch: input image patch
    // - pose_idx: the output index of the closest pose
    // - distance: the distance to the closest pose (L2 distance)
    void EstimatePose(IplImage* patch, int& pose_idx, float& distance) const;

    // EstimatePosePCA: finds the closest match between an input patch and a set of patches with different poses.
    // The distance between patches is computed in PCA space
    // - patch: input image patch
    // - pose_idx: the output index of the closest pose
    // - distance: distance to the closest pose (L2 distance in PCA space)
    // - avg: PCA average vector. If 0, matching without PCA is used
    // - eigenvectors: PCA eigenvectors, one per row
    void EstimatePosePCA(CvArr* patch, int& pose_idx, float& distance, CvMat* avg, CvMat* eigenvalues) const;

    // GetPatchSize: returns the size of each image patch after warping (2 times smaller than the input patch)
    CvSize GetPatchSize() const
    {
        return m_patch_size;
    }

    // GetInputPatchSize: returns the required size of the patch that the descriptor is built from
    // (2 time larger than the patch after warping)
    CvSize GetInputPatchSize() const
    {
        return cvSize(m_patch_size.width*2, m_patch_size.height*2);
    }

    // GetPatch: returns a patch corresponding to specified pose index
    // - index: pose index
    // - return value: the patch corresponding to specified pose index
    IplImage* GetPatch(int index);

    // GetPose: returns a pose corresponding to specified pose index
    // - index: pose index
    // - return value: the pose corresponding to specified pose index
    CvAffinePose GetPose(int index) const;

    // Save: saves all patches with different poses to a specified path
    void Save(const char* path);

    // ReadByName: reads a descriptor from a file storage
    // - fs: file storage
    // - parent: parent node
    // - name: node name
    // - return value: 1 if succeeded, 0 otherwise
    int ReadByName(CvFileStorage* fs, CvFileNode* parent, const char* name);

    // ReadByName: reads a descriptor from a file node
    // - parent: parent node
    // - name: node name
    // - return value: 1 if succeeded, 0 otherwise
    int ReadByName(const FileNode &parent, const char* name);

    // Write: writes a descriptor into a file storage
    // - fs: file storage
    // - name: node name
    void Write(CvFileStorage* fs, const char* name);

    // GetFeatureName: returns a name corresponding to a feature
    const char* GetFeatureName() const;

    // GetCenter: returns the center of the feature
    CvPoint GetCenter() const;

    void SetPCADimHigh(int pca_dim_high) {m_pca_dim_high = pca_dim_high;};
    void SetPCADimLow(int pca_dim_low) {m_pca_dim_low = pca_dim_low;};

    int GetPCADimLow() const;
    int GetPCADimHigh() const;

    CvMat** GetPCACoeffs() const {return m_pca_coeffs;}

protected:
    int m_pose_count; // the number of poses
    CvSize m_patch_size; // size of each image
    IplImage** m_samples; // an array of length m_pose_count containing the patch in different poses
    IplImage* m_input_patch;
    IplImage* m_train_patch;
    CvMat** m_pca_coeffs; // an array of length m_pose_count containing pca decomposition of the patch in different poses
    CvAffinePose* m_affine_poses; // an array of poses
    CvMat** m_transforms; // an array of affine transforms corresponding to poses

    string m_feature_name; // the name of the feature associated with the descriptor
    CvPoint m_center; // the coordinates of the feature (the center of the input image ROI)

    int m_pca_dim_high; // the number of descriptor pca components to use for generating affine poses
    int m_pca_dim_low; // the number of pca components to use for comparison
};


// OneWayDescriptorBase: encapsulates functionality for training/loading a set of one way descriptors
// and finding the nearest closest descriptor to an input feature
class CV_EXPORTS OneWayDescriptorBase
{
public:

    // creates an instance of OneWayDescriptor from a set of training files
    // - patch_size: size of the input (large) patch
    // - pose_count: the number of poses to generate for each descriptor
    // - train_path: path to training files
    // - pca_config: the name of the file that contains PCA for small patches (2 times smaller
    // than patch_size each dimension
    // - pca_hr_config: the name of the file that contains PCA for large patches (of patch_size size)
    // - pca_desc_config: the name of the file that contains descriptors of PCA components
    OneWayDescriptorBase(CvSize patch_size, int pose_count, const char* train_path = 0, const char* pca_config = 0,
                         const char* pca_hr_config = 0, const char* pca_desc_config = 0, int pyr_levels = 1,
                         int pca_dim_high = 100, int pca_dim_low = 100);

    OneWayDescriptorBase(CvSize patch_size, int pose_count, const string &pca_filename, const string &train_path = string(), const string &images_list = string(),
                         float _scale_min = 0.7f, float _scale_max=1.5f, float _scale_step=1.2f, int pyr_levels = 1,
                         int pca_dim_high = 100, int pca_dim_low = 100);


    virtual ~OneWayDescriptorBase();
    void clear ();


    // Allocate: allocates memory for a given number of descriptors
    void Allocate(int train_feature_count);

    // AllocatePCADescriptors: allocates memory for pca descriptors
    void AllocatePCADescriptors();

    // returns patch size
    CvSize GetPatchSize() const {return m_patch_size;};
    // returns the number of poses for each descriptor
    int GetPoseCount() const {return m_pose_count;};

    // returns the number of pyramid levels
    int GetPyrLevels() const {return m_pyr_levels;};

    // returns the number of descriptors
    int GetDescriptorCount() const {return m_train_feature_count;};

    // CreateDescriptorsFromImage: creates descriptors for each of the input features
    // - src: input image
    // - features: input features
    // - pyr_levels: the number of pyramid levels
    void CreateDescriptorsFromImage(IplImage* src, const vector<KeyPoint>& features);

    // CreatePCADescriptors: generates descriptors for PCA components, needed for fast generation of feature descriptors
    void CreatePCADescriptors();

    // returns a feature descriptor by feature index
    const OneWayDescriptor* GetDescriptor(int desc_idx) const {return &m_descriptors[desc_idx];};

    // FindDescriptor: finds the closest descriptor
    // - patch: input image patch
    // - desc_idx: output index of the closest descriptor to the input patch
    // - pose_idx: output index of the closest pose of the closest descriptor to the input patch
    // - distance: distance from the input patch to the closest feature pose
    // - _scales: scales of the input patch for each descriptor
    // - scale_ranges: input scales variation (float[2])
    void FindDescriptor(IplImage* patch, int& desc_idx, int& pose_idx, float& distance, float* _scale = 0, float* scale_ranges = 0) const;

    // - patch: input image patch
    // - n: number of the closest indexes
    // - desc_idxs: output indexes of the closest descriptor to the input patch (n)
    // - pose_idx: output indexes of the closest pose of the closest descriptor to the input patch (n)
    // - distances: distance from the input patch to the closest feature pose (n)
    // - _scales: scales of the input patch
    // - scale_ranges: input scales variation (float[2])
    void FindDescriptor(IplImage* patch, int n, vector<int>& desc_idxs, vector<int>& pose_idxs,
                        vector<float>& distances, vector<float>& _scales, float* scale_ranges = 0) const;

    // FindDescriptor: finds the closest descriptor
    // - src: input image
    // - pt: center of the feature
    // - desc_idx: output index of the closest descriptor to the input patch
    // - pose_idx: output index of the closest pose of the closest descriptor to the input patch
    // - distance: distance from the input patch to the closest feature pose
    void FindDescriptor(IplImage* src, cv::Point2f pt, int& desc_idx, int& pose_idx, float& distance) const;

    // InitializePoses: generates random poses
    void InitializePoses();

    // InitializeTransformsFromPoses: generates 2x3 affine matrices from poses (initializes m_transforms)
    void InitializeTransformsFromPoses();

    // InitializePoseTransforms: subsequently calls InitializePoses and InitializeTransformsFromPoses
    void InitializePoseTransforms();

    // InitializeDescriptor: initializes a descriptor
    // - desc_idx: descriptor index
    // - train_image: image patch (ROI is supported)
    // - feature_label: feature textual label
    void InitializeDescriptor(int desc_idx, IplImage* train_image, const char* feature_label);

    void InitializeDescriptor(int desc_idx, IplImage* train_image, const KeyPoint& keypoint, const char* feature_label);

    // InitializeDescriptors: load features from an image and create descriptors for each of them
    void InitializeDescriptors(IplImage* train_image, const vector<KeyPoint>& features,
                               const char* feature_label = "", int desc_start_idx = 0);

    // Write: writes this object to a file storage
    // - fs: output filestorage
    void Write (FileStorage &fs) const;

    // Read: reads OneWayDescriptorBase object from a file node
    // - fn: input file node
    void Read (const FileNode &fn);

    // LoadPCADescriptors: loads PCA descriptors from a file
    // - filename: input filename
    int LoadPCADescriptors(const char* filename);

    // LoadPCADescriptors: loads PCA descriptors from a file node
    // - fn: input file node
    int LoadPCADescriptors(const FileNode &fn);

    // SavePCADescriptors: saves PCA descriptors to a file
    // - filename: output filename
    void SavePCADescriptors(const char* filename);

    // SavePCADescriptors: saves PCA descriptors to a file storage
    // - fs: output file storage
    void SavePCADescriptors(CvFileStorage* fs) const;

    // GeneratePCA: calculate and save PCA components and descriptors
    // - img_path: path to training PCA images directory
    // - images_list: filename with filenames of training PCA images
    void GeneratePCA(const char* img_path, const char* images_list, int pose_count=500);

    // SetPCAHigh: sets the high resolution pca matrices (copied to internal structures)
    void SetPCAHigh(CvMat* avg, CvMat* eigenvectors);

    // SetPCALow: sets the low resolution pca matrices (copied to internal structures)
    void SetPCALow(CvMat* avg, CvMat* eigenvectors);

    int GetLowPCA(CvMat** avg, CvMat** eigenvectors)
    {
        *avg = m_pca_avg;
        *eigenvectors = m_pca_eigenvectors;
        return m_pca_dim_low;
    };

    int GetPCADimLow() const {return m_pca_dim_low;};
    int GetPCADimHigh() const {return m_pca_dim_high;};

    void ConvertDescriptorsArrayToTree(); // Converting pca_descriptors array to KD tree

    // GetPCAFilename: get default PCA filename
    static string GetPCAFilename () { return "pca.yml"; }

    virtual bool empty() const { return m_train_feature_count <= 0 ? true : false; }

protected:
    CvSize m_patch_size; // patch size
    int m_pose_count; // the number of poses for each descriptor
    int m_train_feature_count; // the number of the training features
    OneWayDescriptor* m_descriptors; // array of train feature descriptors
    CvMat* m_pca_avg; // PCA average Vector for small patches
    CvMat* m_pca_eigenvectors; // PCA eigenvectors for small patches
    CvMat* m_pca_hr_avg; // PCA average Vector for large patches
    CvMat* m_pca_hr_eigenvectors; // PCA eigenvectors for large patches
    OneWayDescriptor* m_pca_descriptors; // an array of PCA descriptors

    cv::flann::Index* m_pca_descriptors_tree;
    CvMat* m_pca_descriptors_matrix;

    CvAffinePose* m_poses; // array of poses
    CvMat** m_transforms; // array of affine transformations corresponding to poses

    int m_pca_dim_high;
    int m_pca_dim_low;

    int m_pyr_levels;
    float scale_min;
    float scale_max;
    float scale_step;

    // SavePCAall: saves PCA components and descriptors to a file storage
    // - fs: output file storage
    void SavePCAall (FileStorage &fs) const;

    // LoadPCAall: loads PCA components and descriptors from a file node
    // - fn: input file node
    void LoadPCAall (const FileNode &fn);
};

class CV_EXPORTS OneWayDescriptorObject : public OneWayDescriptorBase
{
public:
    // creates an instance of OneWayDescriptorObject from a set of training files
    // - patch_size: size of the input (large) patch
    // - pose_count: the number of poses to generate for each descriptor
    // - train_path: path to training files
    // - pca_config: the name of the file that contains PCA for small patches (2 times smaller
    // than patch_size each dimension
    // - pca_hr_config: the name of the file that contains PCA for large patches (of patch_size size)
    // - pca_desc_config: the name of the file that contains descriptors of PCA components
    OneWayDescriptorObject(CvSize patch_size, int pose_count, const char* train_path, const char* pca_config,
                           const char* pca_hr_config = 0, const char* pca_desc_config = 0, int pyr_levels = 1);

    OneWayDescriptorObject(CvSize patch_size, int pose_count, const string &pca_filename,
                           const string &train_path = string (), const string &images_list = string (),
                           float _scale_min = 0.7f, float _scale_max=1.5f, float _scale_step=1.2f, int pyr_levels = 1);


    virtual ~OneWayDescriptorObject();

    // Allocate: allocates memory for a given number of features
    // - train_feature_count: the total number of features
    // - object_feature_count: the number of features extracted from the object
    void Allocate(int train_feature_count, int object_feature_count);


    void SetLabeledFeatures(const vector<KeyPoint>& features) {m_train_features = features;};
    vector<KeyPoint>& GetLabeledFeatures() {return m_train_features;};
    const vector<KeyPoint>& GetLabeledFeatures() const {return m_train_features;};
    vector<KeyPoint> _GetLabeledFeatures() const;

    // IsDescriptorObject: returns 1 if descriptor with specified index is positive, otherwise 0
    int IsDescriptorObject(int desc_idx) const;

    // MatchPointToPart: returns the part number of a feature if it matches one of the object parts, otherwise -1
    int MatchPointToPart(CvPoint pt) const;

    // GetDescriptorPart: returns the part number of the feature corresponding to a specified descriptor
    // - desc_idx: descriptor index
    int GetDescriptorPart(int desc_idx) const;


    void InitializeObjectDescriptors(IplImage* train_image, const vector<KeyPoint>& features,
                                     const char* feature_label, int desc_start_idx = 0, float scale = 1.0f,
                                     int is_background = 0);

    // GetObjectFeatureCount: returns the number of object features
    int GetObjectFeatureCount() const {return m_object_feature_count;};

protected:
    int* m_part_id; // contains part id for each of object descriptors
    vector<KeyPoint> m_train_features; // train features
    int m_object_feature_count; // the number of the positive features

};


/*
 *  OneWayDescriptorMatcher
 */
class OneWayDescriptorMatcher;
typedef OneWayDescriptorMatcher OneWayDescriptorMatch;

class CV_EXPORTS OneWayDescriptorMatcher : public GenericDescriptorMatcher
{
public:
    class CV_EXPORTS Params
    {
    public:
        static const int POSE_COUNT = 500;
        static const int PATCH_WIDTH = 24;
        static const int PATCH_HEIGHT = 24;
        static float GET_MIN_SCALE() { return 0.7f; }
        static float GET_MAX_SCALE() { return 1.5f; }
        static float GET_STEP_SCALE() { return 1.2f; }

        Params( int poseCount = POSE_COUNT,
               Size patchSize = Size(PATCH_WIDTH, PATCH_HEIGHT),
               string pcaFilename = string(),
               string trainPath = string(), string trainImagesList = string(),
               float minScale = GET_MIN_SCALE(), float maxScale = GET_MAX_SCALE(),
               float stepScale = GET_STEP_SCALE() );

        int poseCount;
        Size patchSize;
        string pcaFilename;
        string trainPath;
        string trainImagesList;

        float minScale, maxScale, stepScale;
    };

    OneWayDescriptorMatcher( const Params& params=Params() );
    virtual ~OneWayDescriptorMatcher();

    void initialize( const Params& params, const Ptr<OneWayDescriptorBase>& base=Ptr<OneWayDescriptorBase>() );

    // Clears keypoints storing in collection and OneWayDescriptorBase
    virtual void clear();

    virtual void train();

    virtual bool isMaskSupported();

    virtual void read( const FileNode &fn );
    virtual void write( FileStorage& fs ) const;

    virtual bool empty() const;

    virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const;

protected:
    // Matches a set of keypoints from a single image of the training set. A rectangle with a center in a keypoint
    // and size (patch_width/2*scale, patch_height/2*scale) is cropped from the source image for each
    // keypoint. scale is iterated from DescriptorOneWayParams::min_scale to DescriptorOneWayParams::max_scale.
    // The minimum distance to each training patch with all its affine poses is found over all scales.
    // The class ID of a match is returned for each keypoint. The distance is calculated over PCA components
    // loaded with DescriptorOneWay::Initialize, kd tree is used for finding minimum distances.
    virtual void knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                              vector<vector<DMatch> >& matches, int k,
                              const vector<Mat>& masks, bool compactResult );
    virtual void radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                                 vector<vector<DMatch> >& matches, float maxDistance,
                                 const vector<Mat>& masks, bool compactResult );

    Ptr<OneWayDescriptorBase> base;
    Params params;
    int prevTrainCount;
};

/*
 *  FernDescriptorMatcher
 */
class FernDescriptorMatcher;
typedef FernDescriptorMatcher FernDescriptorMatch;

class CV_EXPORTS FernDescriptorMatcher : public GenericDescriptorMatcher
{
public:
    class CV_EXPORTS Params
    {
    public:
        Params( int nclasses=0,
               int patchSize=FernClassifier::PATCH_SIZE,
               int signatureSize=FernClassifier::DEFAULT_SIGNATURE_SIZE,
               int nstructs=FernClassifier::DEFAULT_STRUCTS,
               int structSize=FernClassifier::DEFAULT_STRUCT_SIZE,
               int nviews=FernClassifier::DEFAULT_VIEWS,
               int compressionMethod=FernClassifier::COMPRESSION_NONE,
               const PatchGenerator& patchGenerator=PatchGenerator() );

        Params( const string& filename );

        int nclasses;
        int patchSize;
        int signatureSize;
        int nstructs;
        int structSize;
        int nviews;
        int compressionMethod;
        PatchGenerator patchGenerator;

        string filename;
    };

    FernDescriptorMatcher( const Params& params=Params() );
    virtual ~FernDescriptorMatcher();

    virtual void clear();

    virtual void train();

    virtual bool isMaskSupported();

    virtual void read( const FileNode &fn );
    virtual void write( FileStorage& fs ) const;
    virtual bool empty() const;

    virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const;

protected:
    virtual void knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                              vector<vector<DMatch> >& matches, int k,
                              const vector<Mat>& masks, bool compactResult );
    virtual void radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                                 vector<vector<DMatch> >& matches, float maxDistance,
                                 const vector<Mat>& masks, bool compactResult );

    void trainFernClassifier();
    void calcBestProbAndMatchIdx( const Mat& image, const Point2f& pt,
                                 float& bestProb, int& bestMatchIdx, vector<float>& signature );
    Ptr<FernClassifier> classifier;
    Params params;
    int prevTrainCount;
};


/*
 * CalonderDescriptorExtractor
 */
template<typename T>
class CV_EXPORTS CalonderDescriptorExtractor : public DescriptorExtractor
{
public:
    CalonderDescriptorExtractor( const string& classifierFile );

    virtual void read( const FileNode &fn );
    virtual void write( FileStorage &fs ) const;

    virtual int descriptorSize() const { return classifier_.classes(); }
    virtual int descriptorType() const { return DataType<T>::type; }

    virtual bool empty() const;

protected:
    virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;

    RTreeClassifier classifier_;
    static const int BORDER_SIZE = 16;
};

template<typename T>
CalonderDescriptorExtractor<T>::CalonderDescriptorExtractor(const std::string& classifier_file)
{
    classifier_.read( classifier_file.c_str() );
}

template<typename T>
void CalonderDescriptorExtractor<T>::computeImpl( const Mat& image,
                                                 vector<KeyPoint>& keypoints,
                                                 Mat& descriptors) const
{
    // Cannot compute descriptors for keypoints on the image border.
    KeyPointsFilter::runByImageBorder(keypoints, image.size(), BORDER_SIZE);

    /// @todo Check 16-byte aligned
    descriptors.create((int)keypoints.size(), classifier_.classes(), cv::DataType<T>::type);

    int patchSize = RandomizedTree::PATCH_SIZE;
    int offset = patchSize / 2;
    for (size_t i = 0; i < keypoints.size(); ++i)
    {
        cv::Point2f pt = keypoints[i].pt;
        IplImage ipl = image( Rect((int)(pt.x - offset), (int)(pt.y - offset), patchSize, patchSize) );
        classifier_.getSignature( &ipl, descriptors.ptr<T>((int)i));
    }
}

template<typename T>
void CalonderDescriptorExtractor<T>::read( const FileNode& )
{}

template<typename T>
void CalonderDescriptorExtractor<T>::write( FileStorage& ) const
{}

template<typename T>
bool CalonderDescriptorExtractor<T>::empty() const
{
    return classifier_.trees_.empty();
}


////////////////////// Brute Force Matcher //////////////////////////

template<class Distance>
class CV_EXPORTS BruteForceMatcher : public BFMatcher
{
public:
    BruteForceMatcher( Distance d = Distance() ) : BFMatcher(Distance::normType, false) {(void)d;}
    virtual ~BruteForceMatcher() {}
};


/****************************************************************************************\
*                                Planar Object Detection                                 *
\****************************************************************************************/

class CV_EXPORTS PlanarObjectDetector
{
public:
    PlanarObjectDetector();
    PlanarObjectDetector(const FileNode& node);
    PlanarObjectDetector(const vector<Mat>& pyr, int _npoints=300,
                         int _patchSize=FernClassifier::PATCH_SIZE,
                         int _nstructs=FernClassifier::DEFAULT_STRUCTS,
                         int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE,
                         int _nviews=FernClassifier::DEFAULT_VIEWS,
                         const LDetector& detector=LDetector(),
                         const PatchGenerator& patchGenerator=PatchGenerator());
    virtual ~PlanarObjectDetector();
    virtual void train(const vector<Mat>& pyr, int _npoints=300,
                       int _patchSize=FernClassifier::PATCH_SIZE,
                       int _nstructs=FernClassifier::DEFAULT_STRUCTS,
                       int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE,
                       int _nviews=FernClassifier::DEFAULT_VIEWS,
                       const LDetector& detector=LDetector(),
                       const PatchGenerator& patchGenerator=PatchGenerator());
    virtual void train(const vector<Mat>& pyr, const vector<KeyPoint>& keypoints,
                       int _patchSize=FernClassifier::PATCH_SIZE,
                       int _nstructs=FernClassifier::DEFAULT_STRUCTS,
                       int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE,
                       int _nviews=FernClassifier::DEFAULT_VIEWS,
                       const LDetector& detector=LDetector(),
                       const PatchGenerator& patchGenerator=PatchGenerator());
    Rect getModelROI() const;
    vector<KeyPoint> getModelPoints() const;
    const LDetector& getDetector() const;
    const FernClassifier& getClassifier() const;
    void setVerbose(bool verbose);

    void read(const FileNode& node);
    void write(FileStorage& fs, const String& name=String()) const;
    bool operator()(const Mat& image, CV_OUT Mat& H, CV_OUT vector<Point2f>& corners) const;
    bool operator()(const vector<Mat>& pyr, const vector<KeyPoint>& keypoints,
                    CV_OUT Mat& H, CV_OUT vector<Point2f>& corners,
                    CV_OUT vector<int>* pairs=0) const;

protected:
    bool verbose;
    Rect modelROI;
    vector<KeyPoint> modelPoints;
    LDetector ldetector;
    FernClassifier fernClassifier;
};

}

// 2009-01-12, Xavier Delacour <xavier.delacour@gmail.com>

struct lsh_hash {
    int h1, h2;
};

struct CvLSHOperations
{
    virtual ~CvLSHOperations() {}

    virtual int vector_add(const void* data) = 0;
    virtual void vector_remove(int i) = 0;
    virtual const void* vector_lookup(int i) = 0;
    virtual void vector_reserve(int n) = 0;
    virtual unsigned int vector_count() = 0;

    virtual void hash_insert(lsh_hash h, int l, int i) = 0;
    virtual void hash_remove(lsh_hash h, int l, int i) = 0;
    virtual int hash_lookup(lsh_hash h, int l, int* ret_i, int ret_i_max) = 0;
};

#endif

#ifdef __cplusplus
extern "C" {
#endif

/* Splits color or grayscale image into multiple connected components
 of nearly the same color/brightness using modification of Burt algorithm.
 comp with contain a pointer to sequence (CvSeq)
 of connected components (CvConnectedComp) */
CVAPI(void) cvPyrSegmentation( IplImage* src, IplImage* dst,
                              CvMemStorage* storage, CvSeq** comp,
                              int level, double threshold1,
                              double threshold2 );

/****************************************************************************************\
*                              Planar subdivisions                                       *
\****************************************************************************************/

/* Initializes Delaunay triangulation */
CVAPI(void)  cvInitSubdivDelaunay2D( CvSubdiv2D* subdiv, CvRect rect );

/* Creates new subdivision */
CVAPI(CvSubdiv2D*)  cvCreateSubdiv2D( int subdiv_type, int header_size,
                                     int vtx_size, int quadedge_size,
                                     CvMemStorage* storage );

/************************* high-level subdivision functions ***************************/

/* Simplified Delaunay diagram creation */
CV_INLINE  CvSubdiv2D* cvCreateSubdivDelaunay2D( CvRect rect, CvMemStorage* storage )
{
    CvSubdiv2D* subdiv = cvCreateSubdiv2D( CV_SEQ_KIND_SUBDIV2D, sizeof(*subdiv),
                                          sizeof(CvSubdiv2DPoint), sizeof(CvQuadEdge2D), storage );

    cvInitSubdivDelaunay2D( subdiv, rect );
    return subdiv;
}


/* Inserts new point to the Delaunay triangulation */
CVAPI(CvSubdiv2DPoint*)  cvSubdivDelaunay2DInsert( CvSubdiv2D* subdiv, CvPoint2D32f pt);

/* Locates a point within the Delaunay triangulation (finds the edge
 the point is left to or belongs to, or the triangulation point the given
 point coinsides with */
CVAPI(CvSubdiv2DPointLocation)  cvSubdiv2DLocate(
                                                 CvSubdiv2D* subdiv, CvPoint2D32f pt,
                                                 CvSubdiv2DEdge* edge,
                                                 CvSubdiv2DPoint** vertex CV_DEFAULT(NULL) );

/* Calculates Voronoi tesselation (i.e. coordinates of Voronoi points) */
CVAPI(void)  cvCalcSubdivVoronoi2D( CvSubdiv2D* subdiv );


/* Removes all Voronoi points from the tesselation */
CVAPI(void)  cvClearSubdivVoronoi2D( CvSubdiv2D* subdiv );


/* Finds the nearest to the given point vertex in subdivision. */
CVAPI(CvSubdiv2DPoint*) cvFindNearestPoint2D( CvSubdiv2D* subdiv, CvPoint2D32f pt );


/************ Basic quad-edge navigation and operations ************/

CV_INLINE  CvSubdiv2DEdge  cvSubdiv2DNextEdge( CvSubdiv2DEdge edge )
{
    return  CV_SUBDIV2D_NEXT_EDGE(edge);
}


CV_INLINE  CvSubdiv2DEdge  cvSubdiv2DRotateEdge( CvSubdiv2DEdge edge, int rotate )
{
    return  (edge & ~3) + ((edge + rotate) & 3);
}

CV_INLINE  CvSubdiv2DEdge  cvSubdiv2DSymEdge( CvSubdiv2DEdge edge )
{
    return edge ^ 2;
}

CV_INLINE  CvSubdiv2DEdge  cvSubdiv2DGetEdge( CvSubdiv2DEdge edge, CvNextEdgeType type )
{
    CvQuadEdge2D* e = (CvQuadEdge2D*)(edge & ~3);
    edge = e->next[(edge + (int)type) & 3];
    return  (edge & ~3) + ((edge + ((int)type >> 4)) & 3);
}


CV_INLINE  CvSubdiv2DPoint*  cvSubdiv2DEdgeOrg( CvSubdiv2DEdge edge )
{
    CvQuadEdge2D* e = (CvQuadEdge2D*)(edge & ~3);
    return (CvSubdiv2DPoint*)e->pt[edge & 3];
}


CV_INLINE  CvSubdiv2DPoint*  cvSubdiv2DEdgeDst( CvSubdiv2DEdge edge )
{
    CvQuadEdge2D* e = (CvQuadEdge2D*)(edge & ~3);
    return (CvSubdiv2DPoint*)e->pt[(edge + 2) & 3];
}

/****************************************************************************************\
*                           Additional operations on Subdivisions                        *
\****************************************************************************************/

// paints voronoi diagram: just demo function
CVAPI(void)  icvDrawMosaic( CvSubdiv2D* subdiv, IplImage* src, IplImage* dst );

// checks planar subdivision for correctness. It is not an absolute check,
// but it verifies some relations between quad-edges
CVAPI(int)   icvSubdiv2DCheck( CvSubdiv2D* subdiv );

// returns squared distance between two 2D points with floating-point coordinates.
CV_INLINE double icvSqDist2D32f( CvPoint2D32f pt1, CvPoint2D32f pt2 )
{
    double dx = pt1.x - pt2.x;
    double dy = pt1.y - pt2.y;

    return dx*dx + dy*dy;
}




CV_INLINE  double  cvTriangleArea( CvPoint2D32f a, CvPoint2D32f b, CvPoint2D32f c )
{
    return ((double)b.x - a.x) * ((double)c.y - a.y) - ((double)b.y - a.y) * ((double)c.x - a.x);
}


/* Constructs kd-tree from set of feature descriptors */
CVAPI(struct CvFeatureTree*) cvCreateKDTree(CvMat* desc);

/* Constructs spill-tree from set of feature descriptors */
CVAPI(struct CvFeatureTree*) cvCreateSpillTree( const CvMat* raw_data,
                                               const int naive CV_DEFAULT(50),
                                               const double rho CV_DEFAULT(.7),
                                               const double tau CV_DEFAULT(.1) );

/* Release feature tree */
CVAPI(void) cvReleaseFeatureTree(struct CvFeatureTree* tr);

/* Searches feature tree for k nearest neighbors of given reference points,
 searching (in case of kd-tree/bbf) at most emax leaves. */
CVAPI(void) cvFindFeatures(struct CvFeatureTree* tr, const CvMat* query_points,
                           CvMat* indices, CvMat* dist, int k, int emax CV_DEFAULT(20));

/* Search feature tree for all points that are inlier to given rect region.
 Only implemented for kd trees */
CVAPI(int) cvFindFeaturesBoxed(struct CvFeatureTree* tr,
                               CvMat* bounds_min, CvMat* bounds_max,
                               CvMat* out_indices);


/* Construct a Locality Sensitive Hash (LSH) table, for indexing d-dimensional vectors of
 given type. Vectors will be hashed L times with k-dimensional p-stable (p=2) functions. */
CVAPI(struct CvLSH*) cvCreateLSH(struct CvLSHOperations* ops, int d,
                                 int L CV_DEFAULT(10), int k CV_DEFAULT(10),
                                 int type CV_DEFAULT(CV_64FC1), double r CV_DEFAULT(4),
                                 int64 seed CV_DEFAULT(-1));

/* Construct in-memory LSH table, with n bins. */
CVAPI(struct CvLSH*) cvCreateMemoryLSH(int d, int n, int L CV_DEFAULT(10), int k CV_DEFAULT(10),
                                       int type CV_DEFAULT(CV_64FC1), double r CV_DEFAULT(4),
                                       int64 seed CV_DEFAULT(-1));

/* Free the given LSH structure. */
CVAPI(void) cvReleaseLSH(struct CvLSH** lsh);

/* Return the number of vectors in the LSH. */
CVAPI(unsigned int) LSHSize(struct CvLSH* lsh);

/* Add vectors to the LSH structure, optionally returning indices. */
CVAPI(void) cvLSHAdd(struct CvLSH* lsh, const CvMat* data, CvMat* indices CV_DEFAULT(0));

/* Remove vectors from LSH, as addressed by given indices. */
CVAPI(void) cvLSHRemove(struct CvLSH* lsh, const CvMat* indices);

/* Query the LSH n times for at most k nearest points; data is n x d,
 indices and dist are n x k. At most emax stored points will be accessed. */
CVAPI(void) cvLSHQuery(struct CvLSH* lsh, const CvMat* query_points,
                       CvMat* indices, CvMat* dist, int k, int emax);

/* Kolmogorov-Zabin stereo-correspondence algorithm (a.k.a. KZ1) */
#define CV_STEREO_GC_OCCLUDED  SHRT_MAX

typedef struct CvStereoGCState
{
    int Ithreshold;
    int interactionRadius;
    float K, lambda, lambda1, lambda2;
    int occlusionCost;
    int minDisparity;
    int numberOfDisparities;
    int maxIters;

    CvMat* left;
    CvMat* right;
    CvMat* dispLeft;
    CvMat* dispRight;
    CvMat* ptrLeft;
    CvMat* ptrRight;
    CvMat* vtxBuf;
    CvMat* edgeBuf;
} CvStereoGCState;

CVAPI(CvStereoGCState*) cvCreateStereoGCState( int numberOfDisparities, int maxIters );
CVAPI(void) cvReleaseStereoGCState( CvStereoGCState** state );

CVAPI(void) cvFindStereoCorrespondenceGC( const CvArr* left, const CvArr* right,
                                         CvArr* disparityLeft, CvArr* disparityRight,
                                         CvStereoGCState* state,
                                         int useDisparityGuess CV_DEFAULT(0) );

/* Calculates optical flow for 2 images using classical Lucas & Kanade algorithm */
CVAPI(void)  cvCalcOpticalFlowLK( const CvArr* prev, const CvArr* curr,
                                 CvSize win_size, CvArr* velx, CvArr* vely );

/* Calculates optical flow for 2 images using block matching algorithm */
CVAPI(void)  cvCalcOpticalFlowBM( const CvArr* prev, const CvArr* curr,
                                 CvSize block_size, CvSize shift_size,
                                 CvSize max_range, int use_previous,
                                 CvArr* velx, CvArr* vely );

/* Calculates Optical flow for 2 images using Horn & Schunck algorithm */
CVAPI(void)  cvCalcOpticalFlowHS( const CvArr* prev, const CvArr* curr,
                                 int use_previous, CvArr* velx, CvArr* vely,
                                 double lambda, CvTermCriteria criteria );


/****************************************************************************************\
*                           Background/foreground segmentation                           *
\****************************************************************************************/

/* We discriminate between foreground and background pixels
 * by building and maintaining a model of the background.
 * Any pixel which does not fit this model is then deemed
 * to be foreground.
 *
 * At present we support two core background models,
 * one of which has two variations:
 *
 *  o CV_BG_MODEL_FGD: latest and greatest algorithm, described in
 *
 *	 Foreground Object Detection from Videos Containing Complex Background.
 *	 Liyuan Li, Weimin Huang, Irene Y.H. Gu, and Qi Tian.
 *	 ACM MM2003 9p
 *
 *  o CV_BG_MODEL_FGD_SIMPLE:
 *       A code comment describes this as a simplified version of the above,
 *       but the code is in fact currently identical
 *
 *  o CV_BG_MODEL_MOG: "Mixture of Gaussians", older algorithm, described in
 *
 *       Moving target classification and tracking from real-time video.
 *       A Lipton, H Fujijoshi, R Patil
 *       Proceedings IEEE Workshop on Application of Computer Vision pp 8-14 1998
 *
 *       Learning patterns of activity using real-time tracking
 *       C Stauffer and W Grimson  August 2000
 *       IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8):747-757
 */


#define CV_BG_MODEL_FGD		0
#define CV_BG_MODEL_MOG		1			/* "Mixture of Gaussians".	*/
#define CV_BG_MODEL_FGD_SIMPLE	2

struct CvBGStatModel;

typedef void (CV_CDECL * CvReleaseBGStatModel)( struct CvBGStatModel** bg_model );
typedef int (CV_CDECL * CvUpdateBGStatModel)( IplImage* curr_frame, struct CvBGStatModel* bg_model,
                                             double learningRate );

#define CV_BG_STAT_MODEL_FIELDS()                                               \
int             type; /*type of BG model*/                                      \
CvReleaseBGStatModel release;                                                   \
CvUpdateBGStatModel update;                                                     \
IplImage*       background;   /*8UC3 reference background image*/               \
IplImage*       foreground;   /*8UC1 foreground image*/                         \
IplImage**      layers;       /*8UC3 reference background image, can be null */ \
int             layer_count;  /* can be zero */                                 \
CvMemStorage*   storage;      /*storage for foreground_regions*/                \
CvSeq*          foreground_regions /*foreground object contours*/

typedef struct CvBGStatModel
{
    CV_BG_STAT_MODEL_FIELDS();
} CvBGStatModel;

//

// Releases memory used by BGStatModel
CVAPI(void) cvReleaseBGStatModel( CvBGStatModel** bg_model );

// Updates statistical model and returns number of found foreground regions
CVAPI(int) cvUpdateBGStatModel( IplImage* current_frame, CvBGStatModel*  bg_model,
                               double learningRate CV_DEFAULT(-1));

// Performs FG post-processing using segmentation
// (all pixels of a region will be classified as foreground if majority of pixels of the region are FG).
// parameters:
//      segments - pointer to result of segmentation (for example MeanShiftSegmentation)
//      bg_model - pointer to CvBGStatModel structure
CVAPI(void) cvRefineForegroundMaskBySegm( CvSeq* segments, CvBGStatModel*  bg_model );

/* Common use change detection function */
CVAPI(int)  cvChangeDetection( IplImage*  prev_frame,
                              IplImage*  curr_frame,
                              IplImage*  change_mask );

/*
 Interface of ACM MM2003 algorithm
 */

/* Default parameters of foreground detection algorithm: */
#define  CV_BGFG_FGD_LC              128
#define  CV_BGFG_FGD_N1C             15
#define  CV_BGFG_FGD_N2C             25

#define  CV_BGFG_FGD_LCC             64
#define  CV_BGFG_FGD_N1CC            25
#define  CV_BGFG_FGD_N2CC            40

/* Background reference image update parameter: */
#define  CV_BGFG_FGD_ALPHA_1         0.1f

/* stat model update parameter
 * 0.002f ~ 1K frame(~45sec), 0.005 ~ 18sec (if 25fps and absolutely static BG)
 */
#define  CV_BGFG_FGD_ALPHA_2         0.005f

/* start value for alpha parameter (to fast initiate statistic model) */
#define  CV_BGFG_FGD_ALPHA_3         0.1f

#define  CV_BGFG_FGD_DELTA           2

#define  CV_BGFG_FGD_T               0.9f

#define  CV_BGFG_FGD_MINAREA         15.f

#define  CV_BGFG_FGD_BG_UPDATE_TRESH 0.5f

/* See the above-referenced Li/Huang/Gu/Tian paper
 * for a full description of these background-model
 * tuning parameters.
 *
 * Nomenclature:  'c'  == "color", a three-component red/green/blue vector.
 *                         We use histograms of these to model the range of
 *                         colors we've seen at a given background pixel.
 *
 *                'cc' == "color co-occurrence", a six-component vector giving
 *                         RGB color for both this frame and preceding frame.
 *                             We use histograms of these to model the range of
 *                         color CHANGES we've seen at a given background pixel.
 */
typedef struct CvFGDStatModelParams
{
    int    Lc;			/* Quantized levels per 'color' component. Power of two, typically 32, 64 or 128.				*/
    int    N1c;			/* Number of color vectors used to model normal background color variation at a given pixel.			*/
    int    N2c;			/* Number of color vectors retained at given pixel.  Must be > N1c, typically ~ 5/3 of N1c.			*/
    /* Used to allow the first N1c vectors to adapt over time to changing background.				*/

    int    Lcc;			/* Quantized levels per 'color co-occurrence' component.  Power of two, typically 16, 32 or 64.			*/
    int    N1cc;		/* Number of color co-occurrence vectors used to model normal background color variation at a given pixel.	*/
    int    N2cc;		/* Number of color co-occurrence vectors retained at given pixel.  Must be > N1cc, typically ~ 5/3 of N1cc.	*/
    /* Used to allow the first N1cc vectors to adapt over time to changing background.				*/

    int    is_obj_without_holes;/* If TRUE we ignore holes within foreground blobs. Defaults to TRUE.						*/
    int    perform_morphing;	/* Number of erode-dilate-erode foreground-blob cleanup iterations.						*/
    /* These erase one-pixel junk blobs and merge almost-touching blobs. Default value is 1.			*/

    float  alpha1;		/* How quickly we forget old background pixel values seen.  Typically set to 0.1  				*/
    float  alpha2;		/* "Controls speed of feature learning". Depends on T. Typical value circa 0.005. 				*/
    float  alpha3;		/* Alternate to alpha2, used (e.g.) for quicker initial convergence. Typical value 0.1.				*/

    float  delta;		/* Affects color and color co-occurrence quantization, typically set to 2.					*/
    float  T;			/* "A percentage value which determines when new features can be recognized as new background." (Typically 0.9).*/
    float  minArea;		/* Discard foreground blobs whose bounding box is smaller than this threshold.					*/
} CvFGDStatModelParams;

typedef struct CvBGPixelCStatTable
{
    float          Pv, Pvb;
    uchar          v[3];
} CvBGPixelCStatTable;

typedef struct CvBGPixelCCStatTable
{
    float          Pv, Pvb;
    uchar          v[6];
} CvBGPixelCCStatTable;

typedef struct CvBGPixelStat
{
    float                 Pbc;
    float                 Pbcc;
    CvBGPixelCStatTable*  ctable;
    CvBGPixelCCStatTable* cctable;
    uchar                 is_trained_st_model;
    uchar                 is_trained_dyn_model;
} CvBGPixelStat;


typedef struct CvFGDStatModel
{
    CV_BG_STAT_MODEL_FIELDS();
    CvBGPixelStat*         pixel_stat;
    IplImage*              Ftd;
    IplImage*              Fbd;
    IplImage*              prev_frame;
    CvFGDStatModelParams   params;
} CvFGDStatModel;

/* Creates FGD model */
CVAPI(CvBGStatModel*) cvCreateFGDStatModel( IplImage* first_frame,
                                           CvFGDStatModelParams* parameters CV_DEFAULT(NULL));

/*
 Interface of Gaussian mixture algorithm

 "An improved adaptive background mixture model for real-time tracking with shadow detection"
 P. KadewTraKuPong and R. Bowden,
 Proc. 2nd European Workshp on Advanced Video-Based Surveillance Systems, 2001."
 http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf
 */

/* Note:  "MOG" == "Mixture Of Gaussians": */

#define CV_BGFG_MOG_MAX_NGAUSSIANS 500

/* default parameters of gaussian background detection algorithm */
#define CV_BGFG_MOG_BACKGROUND_THRESHOLD     0.7     /* threshold sum of weights for background test */
#define CV_BGFG_MOG_STD_THRESHOLD            2.5     /* lambda=2.5 is 99% */
#define CV_BGFG_MOG_WINDOW_SIZE              200     /* Learning rate; alpha = 1/CV_GBG_WINDOW_SIZE */
#define CV_BGFG_MOG_NGAUSSIANS               5       /* = K = number of Gaussians in mixture */
#define CV_BGFG_MOG_WEIGHT_INIT              0.05
#define CV_BGFG_MOG_SIGMA_INIT               30
#define CV_BGFG_MOG_MINAREA                  15.f


#define CV_BGFG_MOG_NCOLORS                  3

typedef struct CvGaussBGStatModelParams
{
    int     win_size;               /* = 1/alpha */
    int     n_gauss;
    double  bg_threshold, std_threshold, minArea;
    double  weight_init, variance_init;
}CvGaussBGStatModelParams;

typedef struct CvGaussBGValues
{
    int         match_sum;
    double      weight;
    double      variance[CV_BGFG_MOG_NCOLORS];
    double      mean[CV_BGFG_MOG_NCOLORS];
} CvGaussBGValues;

typedef struct CvGaussBGPoint
{
    CvGaussBGValues* g_values;
} CvGaussBGPoint;


typedef struct CvGaussBGModel
{
    CV_BG_STAT_MODEL_FIELDS();
    CvGaussBGStatModelParams   params;
    CvGaussBGPoint*            g_point;
    int                        countFrames;
    void*                      mog;
} CvGaussBGModel;


/* Creates Gaussian mixture background model */
CVAPI(CvBGStatModel*) cvCreateGaussianBGModel( IplImage* first_frame,
                                              CvGaussBGStatModelParams* parameters CV_DEFAULT(NULL));


typedef struct CvBGCodeBookElem
{
    struct CvBGCodeBookElem* next;
    int tLastUpdate;
    int stale;
    uchar boxMin[3];
    uchar boxMax[3];
    uchar learnMin[3];
    uchar learnMax[3];
} CvBGCodeBookElem;

typedef struct CvBGCodeBookModel
{
    CvSize size;
    int t;
    uchar cbBounds[3];
    uchar modMin[3];
    uchar modMax[3];
    CvBGCodeBookElem** cbmap;
    CvMemStorage* storage;
    CvBGCodeBookElem* freeList;
} CvBGCodeBookModel;

CVAPI(CvBGCodeBookModel*) cvCreateBGCodeBookModel( void );
CVAPI(void) cvReleaseBGCodeBookModel( CvBGCodeBookModel** model );

CVAPI(void) cvBGCodeBookUpdate( CvBGCodeBookModel* model, const CvArr* image,
                               CvRect roi CV_DEFAULT(cvRect(0,0,0,0)),
                               const CvArr* mask CV_DEFAULT(0) );

CVAPI(int) cvBGCodeBookDiff( const CvBGCodeBookModel* model, const CvArr* image,
                            CvArr* fgmask, CvRect roi CV_DEFAULT(cvRect(0,0,0,0)) );

CVAPI(void) cvBGCodeBookClearStale( CvBGCodeBookModel* model, int staleThresh,
                                   CvRect roi CV_DEFAULT(cvRect(0,0,0,0)),
                                   const CvArr* mask CV_DEFAULT(0) );

CVAPI(CvSeq*) cvSegmentFGMask( CvArr *fgmask, int poly1Hull0 CV_DEFAULT(1),
                              float perimScale CV_DEFAULT(4.f),
                              CvMemStorage* storage CV_DEFAULT(0),
                              CvPoint offset CV_DEFAULT(cvPoint(0,0)));

#ifdef __cplusplus
}
#endif

#endif

/* End of file. */