1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
/***********************************************************************
 * Software License Agreement (BSD License)
 *
 * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 *
 * THE BSD LICENSE
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *************************************************************************/

#ifndef OPENCV_FLANN_DIST_H_
#define OPENCV_FLANN_DIST_H_

#include <cmath>
#include <cstdlib>
#include <string.h>
#ifdef _MSC_VER
typedef unsigned __int32 uint32_t;
typedef unsigned __int64 uint64_t;
#else
#include <stdint.h>
#endif

#include "defines.h"

#if (defined WIN32 || defined _WIN32) && defined(_M_ARM)
# include <Intrin.h>
#endif

#ifdef __ARM_NEON__
# include "arm_neon.h"
#endif

namespace cvflann
{

template<typename T>
inline T abs(T x) { return (x<0) ? -x : x; }

template<>
inline int abs<int>(int x) { return ::abs(x); }

template<>
inline float abs<float>(float x) { return fabsf(x); }

template<>
inline double abs<double>(double x) { return fabs(x); }

template<typename T>
struct Accumulator { typedef T Type; };
template<>
struct Accumulator<unsigned char>  { typedef float Type; };
template<>
struct Accumulator<unsigned short> { typedef float Type; };
template<>
struct Accumulator<unsigned int> { typedef float Type; };
template<>
struct Accumulator<char>   { typedef float Type; };
template<>
struct Accumulator<short>  { typedef float Type; };
template<>
struct Accumulator<int> { typedef float Type; };

#undef True
#undef False

class True
{
};

class False
{
};


/**
 * Squared Euclidean distance functor.
 *
 * This is the simpler, unrolled version. This is preferable for
 * very low dimensionality data (eg 3D points)
 */
template<class T>
struct L2_Simple
{
    typedef True is_kdtree_distance;
    typedef True is_vector_space_distance;

    typedef T ElementType;
    typedef typename Accumulator<T>::Type ResultType;

    template <typename Iterator1, typename Iterator2>
    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
    {
        ResultType result = ResultType();
        ResultType diff;
        for(size_t i = 0; i < size; ++i ) {
            diff = *a++ - *b++;
            result += diff*diff;
        }
        return result;
    }

    template <typename U, typename V>
    inline ResultType accum_dist(const U& a, const V& b, int) const
    {
        return (a-b)*(a-b);
    }
};



/**
 * Squared Euclidean distance functor, optimized version
 */
template<class T>
struct L2
{
    typedef True is_kdtree_distance;
    typedef True is_vector_space_distance;

    typedef T ElementType;
    typedef typename Accumulator<T>::Type ResultType;

    /**
     *  Compute the squared Euclidean distance between two vectors.
     *
     *	This is highly optimised, with loop unrolling, as it is one
     *	of the most expensive inner loops.
     *
     *	The computation of squared root at the end is omitted for
     *	efficiency.
     */
    template <typename Iterator1, typename Iterator2>
    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
    {
        ResultType result = ResultType();
        ResultType diff0, diff1, diff2, diff3;
        Iterator1 last = a + size;
        Iterator1 lastgroup = last - 3;

        /* Process 4 items with each loop for efficiency. */
        while (a < lastgroup) {
            diff0 = (ResultType)(a[0] - b[0]);
            diff1 = (ResultType)(a[1] - b[1]);
            diff2 = (ResultType)(a[2] - b[2]);
            diff3 = (ResultType)(a[3] - b[3]);
            result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
            a += 4;
            b += 4;

            if ((worst_dist>0)&&(result>worst_dist)) {
                return result;
            }
        }
        /* Process last 0-3 pixels.  Not needed for standard vector lengths. */
        while (a < last) {
            diff0 = (ResultType)(*a++ - *b++);
            result += diff0 * diff0;
        }
        return result;
    }

    /**
     *	Partial euclidean distance, using just one dimension. This is used by the
     *	kd-tree when computing partial distances while traversing the tree.
     *
     *	Squared root is omitted for efficiency.
     */
    template <typename U, typename V>
    inline ResultType accum_dist(const U& a, const V& b, int) const
    {
        return (a-b)*(a-b);
    }
};


/*
 * Manhattan distance functor, optimized version
 */
template<class T>
struct L1
{
    typedef True is_kdtree_distance;
    typedef True is_vector_space_distance;

    typedef T ElementType;
    typedef typename Accumulator<T>::Type ResultType;

    /**
     *  Compute the Manhattan (L_1) distance between two vectors.
     *
     *	This is highly optimised, with loop unrolling, as it is one
     *	of the most expensive inner loops.
     */
    template <typename Iterator1, typename Iterator2>
    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
    {
        ResultType result = ResultType();
        ResultType diff0, diff1, diff2, diff3;
        Iterator1 last = a + size;
        Iterator1 lastgroup = last - 3;

        /* Process 4 items with each loop for efficiency. */
        while (a < lastgroup) {
            diff0 = (ResultType)abs(a[0] - b[0]);
            diff1 = (ResultType)abs(a[1] - b[1]);
            diff2 = (ResultType)abs(a[2] - b[2]);
            diff3 = (ResultType)abs(a[3] - b[3]);
            result += diff0 + diff1 + diff2 + diff3;
            a += 4;
            b += 4;

            if ((worst_dist>0)&&(result>worst_dist)) {
                return result;
            }
        }
        /* Process last 0-3 pixels.  Not needed for standard vector lengths. */
        while (a < last) {
            diff0 = (ResultType)abs(*a++ - *b++);
            result += diff0;
        }
        return result;
    }

    /**
     * Partial distance, used by the kd-tree.
     */
    template <typename U, typename V>
    inline ResultType accum_dist(const U& a, const V& b, int) const
    {
        return abs(a-b);
    }
};



template<class T>
struct MinkowskiDistance
{
    typedef True is_kdtree_distance;
    typedef True is_vector_space_distance;

    typedef T ElementType;
    typedef typename Accumulator<T>::Type ResultType;

    int order;

    MinkowskiDistance(int order_) : order(order_) {}

    /**
     *  Compute the Minkowsky (L_p) distance between two vectors.
     *
     *	This is highly optimised, with loop unrolling, as it is one
     *	of the most expensive inner loops.
     *
     *	The computation of squared root at the end is omitted for
     *	efficiency.
     */
    template <typename Iterator1, typename Iterator2>
    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
    {
        ResultType result = ResultType();
        ResultType diff0, diff1, diff2, diff3;
        Iterator1 last = a + size;
        Iterator1 lastgroup = last - 3;

        /* Process 4 items with each loop for efficiency. */
        while (a < lastgroup) {
            diff0 = (ResultType)abs(a[0] - b[0]);
            diff1 = (ResultType)abs(a[1] - b[1]);
            diff2 = (ResultType)abs(a[2] - b[2]);
            diff3 = (ResultType)abs(a[3] - b[3]);
            result += pow(diff0,order) + pow(diff1,order) + pow(diff2,order) + pow(diff3,order);
            a += 4;
            b += 4;

            if ((worst_dist>0)&&(result>worst_dist)) {
                return result;
            }
        }
        /* Process last 0-3 pixels.  Not needed for standard vector lengths. */
        while (a < last) {
            diff0 = (ResultType)abs(*a++ - *b++);
            result += pow(diff0,order);
        }
        return result;
    }

    /**
     * Partial distance, used by the kd-tree.
     */
    template <typename U, typename V>
    inline ResultType accum_dist(const U& a, const V& b, int) const
    {
        return pow(static_cast<ResultType>(abs(a-b)),order);
    }
};



template<class T>
struct MaxDistance
{
    typedef False is_kdtree_distance;
    typedef True is_vector_space_distance;

    typedef T ElementType;
    typedef typename Accumulator<T>::Type ResultType;

    /**
     *  Compute the max distance (L_infinity) between two vectors.
     *
     *  This distance is not a valid kdtree distance, it's not dimensionwise additive.
     */
    template <typename Iterator1, typename Iterator2>
    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
    {
        ResultType result = ResultType();
        ResultType diff0, diff1, diff2, diff3;
        Iterator1 last = a + size;
        Iterator1 lastgroup = last - 3;

        /* Process 4 items with each loop for efficiency. */
        while (a < lastgroup) {
            diff0 = abs(a[0] - b[0]);
            diff1 = abs(a[1] - b[1]);
            diff2 = abs(a[2] - b[2]);
            diff3 = abs(a[3] - b[3]);
            if (diff0>result) {result = diff0; }
            if (diff1>result) {result = diff1; }
            if (diff2>result) {result = diff2; }
            if (diff3>result) {result = diff3; }
            a += 4;
            b += 4;

            if ((worst_dist>0)&&(result>worst_dist)) {
                return result;
            }
        }
        /* Process last 0-3 pixels.  Not needed for standard vector lengths. */
        while (a < last) {
            diff0 = abs(*a++ - *b++);
            result = (diff0>result) ? diff0 : result;
        }
        return result;
    }

    /* This distance functor is not dimension-wise additive, which
     * makes it an invalid kd-tree distance, not implementing the accum_dist method */

};

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

/**
 * Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
 * bit count of A exclusive XOR'ed with B
 */
struct HammingLUT
{
    typedef False is_kdtree_distance;
    typedef False is_vector_space_distance;

    typedef unsigned char ElementType;
    typedef int ResultType;

    /** this will count the bits in a ^ b
     */
    ResultType operator()(const unsigned char* a, const unsigned char* b, int size) const
    {
        static const uchar popCountTable[] =
        {
            0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
            1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
            1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
            2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
            1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
            2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
            2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
            3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
        };
        ResultType result = 0;
        for (int i = 0; i < size; i++) {
            result += popCountTable[a[i] ^ b[i]];
        }
        return result;
    }
};

/**
 * Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
 * bit count of A exclusive XOR'ed with B
 */
struct HammingLUT2
{
    typedef False is_kdtree_distance;
    typedef False is_vector_space_distance;

    typedef unsigned char ElementType;
    typedef int ResultType;

    /** this will count the bits in a ^ b
     */
    ResultType operator()(const unsigned char* a, const unsigned char* b, size_t size) const
    {
        static const uchar popCountTable[] =
        {
            0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
            1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
            1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
            2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
            1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
            2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
            2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
            3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
        };
        ResultType result = 0;
        for (size_t i = 0; i < size; i++) {
            result += popCountTable[a[i] ^ b[i]];
        }
        return result;
    }
};

/**
 * Hamming distance functor (pop count between two binary vectors, i.e. xor them and count the number of bits set)
 * That code was taken from brief.cpp in OpenCV
 */
template<class T>
struct Hamming
{
    typedef False is_kdtree_distance;
    typedef False is_vector_space_distance;


    typedef T ElementType;
    typedef int ResultType;

    template<typename Iterator1, typename Iterator2>
    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
    {
        ResultType result = 0;
#ifdef __ARM_NEON__
        {
            uint32x4_t bits = vmovq_n_u32(0);
            for (size_t i = 0; i < size; i += 16) {
                uint8x16_t A_vec = vld1q_u8 (a + i);
                uint8x16_t B_vec = vld1q_u8 (b + i);
                uint8x16_t AxorB = veorq_u8 (A_vec, B_vec);
                uint8x16_t bitsSet = vcntq_u8 (AxorB);
                uint16x8_t bitSet8 = vpaddlq_u8 (bitsSet);
                uint32x4_t bitSet4 = vpaddlq_u16 (bitSet8);
                bits = vaddq_u32(bits, bitSet4);
            }
            uint64x2_t bitSet2 = vpaddlq_u32 (bits);
            result = vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),0);
            result += vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),2);
        }
#elif __GNUC__
        {
            //for portability just use unsigned long -- and use the __builtin_popcountll (see docs for __builtin_popcountll)
            typedef unsigned long long pop_t;
            const size_t modulo = size % sizeof(pop_t);
            const pop_t* a2 = reinterpret_cast<const pop_t*> (a);
            const pop_t* b2 = reinterpret_cast<const pop_t*> (b);
            const pop_t* a2_end = a2 + (size / sizeof(pop_t));

            for (; a2 != a2_end; ++a2, ++b2) result += __builtin_popcountll((*a2) ^ (*b2));

            if (modulo) {
                //in the case where size is not dividable by sizeof(size_t)
                //need to mask off the bits at the end
                pop_t a_final = 0, b_final = 0;
                memcpy(&a_final, a2, modulo);
                memcpy(&b_final, b2, modulo);
                result += __builtin_popcountll(a_final ^ b_final);
            }
        }
#else // NO NEON and NOT GNUC
        typedef unsigned long long pop_t;
        HammingLUT lut;
        result = lut(reinterpret_cast<const unsigned char*> (a),
                     reinterpret_cast<const unsigned char*> (b), size * sizeof(pop_t));
#endif
        return result;
    }
};

template<typename T>
struct Hamming2
{
    typedef False is_kdtree_distance;
    typedef False is_vector_space_distance;

    typedef T ElementType;
    typedef int ResultType;

    /** This is popcount_3() from:
     * http://en.wikipedia.org/wiki/Hamming_weight */
    unsigned int popcnt32(uint32_t n) const
    {
        n -= ((n >> 1) & 0x55555555);
        n = (n & 0x33333333) + ((n >> 2) & 0x33333333);
        return (((n + (n >> 4))& 0xF0F0F0F)* 0x1010101) >> 24;
    }

#ifdef FLANN_PLATFORM_64_BIT
    unsigned int popcnt64(uint64_t n) const
    {
        n -= ((n >> 1) & 0x5555555555555555);
        n = (n & 0x3333333333333333) + ((n >> 2) & 0x3333333333333333);
        return (((n + (n >> 4))& 0x0f0f0f0f0f0f0f0f)* 0x0101010101010101) >> 56;
    }
#endif

    template <typename Iterator1, typename Iterator2>
    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
    {
#ifdef FLANN_PLATFORM_64_BIT
        const uint64_t* pa = reinterpret_cast<const uint64_t*>(a);
        const uint64_t* pb = reinterpret_cast<const uint64_t*>(b);
        ResultType result = 0;
        size /= (sizeof(uint64_t)/sizeof(unsigned char));
        for(size_t i = 0; i < size; ++i ) {
            result += popcnt64(*pa ^ *pb);
            ++pa;
            ++pb;
        }
#else
        const uint32_t* pa = reinterpret_cast<const uint32_t*>(a);
        const uint32_t* pb = reinterpret_cast<const uint32_t*>(b);
        ResultType result = 0;
        size /= (sizeof(uint32_t)/sizeof(unsigned char));
        for(size_t i = 0; i < size; ++i ) {
            result += popcnt32(*pa ^ *pb);
            ++pa;
            ++pb;
        }
#endif
        return result;
    }
};



////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

template<class T>
struct HistIntersectionDistance
{
    typedef True is_kdtree_distance;
    typedef True is_vector_space_distance;

    typedef T ElementType;
    typedef typename Accumulator<T>::Type ResultType;

    /**
     *  Compute the histogram intersection distance
     */
    template <typename Iterator1, typename Iterator2>
    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
    {
        ResultType result = ResultType();
        ResultType min0, min1, min2, min3;
        Iterator1 last = a + size;
        Iterator1 lastgroup = last - 3;

        /* Process 4 items with each loop for efficiency. */
        while (a < lastgroup) {
            min0 = (ResultType)(a[0] < b[0] ? a[0] : b[0]);
            min1 = (ResultType)(a[1] < b[1] ? a[1] : b[1]);
            min2 = (ResultType)(a[2] < b[2] ? a[2] : b[2]);
            min3 = (ResultType)(a[3] < b[3] ? a[3] : b[3]);
            result += min0 + min1 + min2 + min3;
            a += 4;
            b += 4;
            if ((worst_dist>0)&&(result>worst_dist)) {
                return result;
            }
        }
        /* Process last 0-3 pixels.  Not needed for standard vector lengths. */
        while (a < last) {
            min0 = (ResultType)(*a < *b ? *a : *b);
            result += min0;
            ++a;
            ++b;
        }
        return result;
    }

    /**
     * Partial distance, used by the kd-tree.
     */
    template <typename U, typename V>
    inline ResultType accum_dist(const U& a, const V& b, int) const
    {
        return a<b ? a : b;
    }
};



template<class T>
struct HellingerDistance
{
    typedef True is_kdtree_distance;
    typedef True is_vector_space_distance;

    typedef T ElementType;
    typedef typename Accumulator<T>::Type ResultType;

    /**
     *  Compute the histogram intersection distance
     */
    template <typename Iterator1, typename Iterator2>
    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
    {
        ResultType result = ResultType();
        ResultType diff0, diff1, diff2, diff3;
        Iterator1 last = a + size;
        Iterator1 lastgroup = last - 3;

        /* Process 4 items with each loop for efficiency. */
        while (a < lastgroup) {
            diff0 = sqrt(static_cast<ResultType>(a[0])) - sqrt(static_cast<ResultType>(b[0]));
            diff1 = sqrt(static_cast<ResultType>(a[1])) - sqrt(static_cast<ResultType>(b[1]));
            diff2 = sqrt(static_cast<ResultType>(a[2])) - sqrt(static_cast<ResultType>(b[2]));
            diff3 = sqrt(static_cast<ResultType>(a[3])) - sqrt(static_cast<ResultType>(b[3]));
            result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
            a += 4;
            b += 4;
        }
        while (a < last) {
            diff0 = sqrt(static_cast<ResultType>(*a++)) - sqrt(static_cast<ResultType>(*b++));
            result += diff0 * diff0;
        }
        return result;
    }

    /**
     * Partial distance, used by the kd-tree.
     */
    template <typename U, typename V>
    inline ResultType accum_dist(const U& a, const V& b, int) const
    {
        return sqrt(static_cast<ResultType>(a)) - sqrt(static_cast<ResultType>(b));
    }
};


template<class T>
struct ChiSquareDistance
{
    typedef True is_kdtree_distance;
    typedef True is_vector_space_distance;

    typedef T ElementType;
    typedef typename Accumulator<T>::Type ResultType;

    /**
     *  Compute the chi-square distance
     */
    template <typename Iterator1, typename Iterator2>
    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
    {
        ResultType result = ResultType();
        ResultType sum, diff;
        Iterator1 last = a + size;

        while (a < last) {
            sum = (ResultType)(*a + *b);
            if (sum>0) {
                diff = (ResultType)(*a - *b);
                result += diff*diff/sum;
            }
            ++a;
            ++b;

            if ((worst_dist>0)&&(result>worst_dist)) {
                return result;
            }
        }
        return result;
    }

    /**
     * Partial distance, used by the kd-tree.
     */
    template <typename U, typename V>
    inline ResultType accum_dist(const U& a, const V& b, int) const
    {
        ResultType result = ResultType();
        ResultType sum, diff;

        sum = (ResultType)(a+b);
        if (sum>0) {
            diff = (ResultType)(a-b);
            result = diff*diff/sum;
        }
        return result;
    }
};


template<class T>
struct KL_Divergence
{
    typedef True is_kdtree_distance;
    typedef True is_vector_space_distance;

    typedef T ElementType;
    typedef typename Accumulator<T>::Type ResultType;

    /**
     *  Compute the Kullback–Leibler divergence
     */
    template <typename Iterator1, typename Iterator2>
    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
    {
        ResultType result = ResultType();
        Iterator1 last = a + size;

        while (a < last) {
            if (* a != 0) {
                ResultType ratio = (ResultType)(*a / *b);
                if (ratio>0) {
                    result += *a * log(ratio);
                }
            }
            ++a;
            ++b;

            if ((worst_dist>0)&&(result>worst_dist)) {
                return result;
            }
        }
        return result;
    }

    /**
     * Partial distance, used by the kd-tree.
     */
    template <typename U, typename V>
    inline ResultType accum_dist(const U& a, const V& b, int) const
    {
        ResultType result = ResultType();
        ResultType ratio = (ResultType)(a / b);
        if (ratio>0) {
            result = a * log(ratio);
        }
        return result;
    }
};



/*
 * This is a "zero iterator". It basically behaves like a zero filled
 * array to all algorithms that use arrays as iterators (STL style).
 * It's useful when there's a need to compute the distance between feature
 * and origin it and allows for better compiler optimisation than using a
 * zero-filled array.
 */
template <typename T>
struct ZeroIterator
{

    T operator*()
    {
        return 0;
    }

    T operator[](int)
    {
        return 0;
    }

    const ZeroIterator<T>& operator ++()
    {
        return *this;
    }

    ZeroIterator<T> operator ++(int)
    {
        return *this;
    }

    ZeroIterator<T>& operator+=(int)
    {
        return *this;
    }

};

}

#endif //OPENCV_FLANN_DIST_H_